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Abstract

This paper proposes a novel fusion of an inertial measurement unit (IMU) and stereo camera method

based on direct sparse odometry (DSO) and stereo DSO. It jointly optimizes all model parameters

within a sliding window, including the inverse depth of all selected pixels and the internal or external

camera parameters of all keyframes. The vision part uses a photometric error function that optimizes 3D

geometry and camera pose in a combined energy functional. The proposed algorithm uses image blocks

to extract neighboring image features and directly forms measurement residuals in the image intensity

space. A fixed-baseline stereo camera solves scale drift. IMU information is accumulated between several

frames using manifold pre-integration and is inserted into the optimization as additional constraints

between keyframes. The scale and gravity inserted are incorporated into the stereo visual inertial

odometry model and are optimized together with other variables such as poses. The experimental

results show that the tracking accuracy and robustness of the proposed method are superior to those of

the state-of-the-art fused IMU method. In addition, compared with previous semi-dense direct methods,

the proposed method displays a higher reconstruction density and scene recovery.

Keywords: Direct sparse odometry, IMU pre-integration, sliding window optimization, 3D

reconstruction

1. Introduction

Recently, simultaneous localization and mapping (SLAM) has been a popular research topic in

robotics, because it is a fundamental building block for many emerging technologies such as self-driving

cars [1], robotic navigation [2], unmanned aerial vehicles (UAVs), virtual reality (VR), and augmented
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reality (AR). Pose tracking has attracted significant attention in computer vision. While traditional5

robotic systems such as self-driving cars have largely relied on LiDAR to actively sense the environ-

ment and perform self-localization and mapping, visual SLAM and odometry algorithms have greatly

improved in terms of performance. Compared with other sensors, the camera and IMUs are inexpen-

sive, ubiquitous and complementary, and can be combined to work jointly. Visual sensors provide rich

information for robust visual tracking. Using vision, the full 3D rotation and translation of a robot can10

be observed in an environment with sufficient features. IMUs can measure accelerations and angular

velocities at high frame-rates in order to maintain the tracking of feature points in such cases as when

the camera points at a wall with poor texture. IMUs can also observe acceleration resulting from gravity

and extract an absolute horizontal reference in the environment.

There are direct and indirect methods for solving SLAM and visual inertial odometry (VIO). In-15

direct methods (i.e, feature-based methods) operate in two steps. First, a set of feature observations

are extracted from the image. Second, the camera position and scene geometry are estimated in a

probabilistic model. The two steps are usually independent. In the second step, the re-projection error

can be used to remove outlier points in data association and to correct the matching result (such as

the EM-like method in [3]). A direct method uses actual sensor photometric values received from the20

gradient direction over a period of time as a measurement of a probabilistic model and regards data

association and pose estimation as a unified nonlinear optimization problem. Furthermore, an indirect

method calculates the re-projection error of the camera pose and the positions of feature points in the

robot the map, while a direct method calculates the photometric error. The so-called photometric error

means that the minimized objective function is usually determined by the error between the images25

rather than the geometric error after re-projection. In this paper, we propose a tightly coupled di-

rect method for VIO. Motion estimation and 3D reconstruction are important technologies for robots.

Compared with other sensors, the camera and IMU are inexpensive and lightweight. Owing to these

advantages, the camera and IMU have received wide attention. However, when faced with low-texture

areas or during fast maneuvering, the current visual SLAM and VO methods lack robustness. An IMU30

can improve this robustness by providing accurate short-term motion constraints.

In this paper, we propose a novel stereo VIO method. It is based on DSO [4], and uses bundle

adjustment (BA) to minimize photometric error and optimize 3D geometry and camera poses in a

combined energy functional. Camera pose, velocity and IMU biases are simultaneously estimated by

minimizing a cost function which combines visual energy functional with inertial energy functional. At35

the same time, the external parameter which is the rotation and translation between camera and IMU

can also realize real-time online correction. This method is particularly beneficial for direct methods
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Figure 1: Recostruction of EuRoC-dataset tighted fusion of IMU measurement with direct image align-

ment.

because the error function is highly non-convex and good initialization is essential. Compared with

monocular visual odometry, stereo visual odometry can compute pixel depths using triangulation. An

IMU fused with vision also enables us to observe the scale of the environment. Fig. 1 shows the output40

of our stereo VIO algorithm when running in an indoor dataset.

The rest of the paper is structured as follows. In Sect. 2, we discuss the relevant literature. The

motivation and system overview are discussed in Sect. 3. Implementation details and experimental

evaluations are presented in Sect. 4. Finally, the paper is concluded in Sect. 5.

2. Related work45

Recently, motion estimation combining cameras and IMUs has been a popular research topic. In

this section, we provide an overview of the vision-only and VIO methods for motion estimation, and we

also discuss the direct vs. feature-based approach.

The first work on direct visual-odometry was reported in 2007 [5]. Since then, direct methods have

been used in the RGB-D camera [6], as they directly provide the required pixel-wise depth as sensor50

measurement. Recently, direct methods have also become popular in monocular cameras. Newcombe

et al. proposed the dense tracking and mapping method called DTAM [7], Forster et al. proposed fast
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semi-direct monocular visual odometry methods called SVO [8], Engle et al. proposed LSD-SLAM [9]

and DSO [4]. Direct methods can compute geometry and motion directly from the images and thus

they do not involve the intermediate step of keypoint detection and matching. Indirect methods such55

as ORB-SLAM [10][11] are based on detected keypoints. Keyframe-based methods such as PTAM [12]

perform motion and 3D structure estimation in parallel.

Because vision and IMU sensors can compensate each other’s weaknesses, there have been research

studies on fusing vision with an IMU. IMUs can overcome the limitation of vision-based systems, provide

valuable short-term motion constraints, and make roll, pitch and scale of robot pose observable. In early60

work, vision was treated as an independent 6 DOF sensor and fused with IMUs measurement in a filter

framework [13]. There are loosely coupled and tightly coupled methods for the fusion of the IMU and

vision. If a loosely coupled [14] method using an existing vision-only algorithm is not modified, it can

be easily replaced by another method. However, it cannot benefit from the availability of IMU data to

work with for vision.65

Thus some recent works used a tightly coupled method, which regards VIO as one integrated esti-

mation problem, two sensors are used in the optimization-based back-end. For example, Leutenegger

et al. proposed a keyframe-based VIO [15], Qin et al. proposed VINS-Mono [16], a robust and versa-

tile monocular visual-inertial state estimator, and Mur-Artal et al. proposed a tightly coupled visual

inertial simultaneous localization and mapped system [17] that is able to close loops and reuse its map70

to achieve zero-drift localization in the mapping areas.

However, visual-only algorithms and visual inertial algorithms have attracted the attention of many

researchers. The accuracy and robustness of DSO [4] outperformed state-of-the-art monocular SLAM

algorithms such as ORB-SLAM [10] on a reasonably large dataset for monocular camera tracking [18].

The direct sparse VIO method using dynamic marginalization [19] proposed by Stumberg outperformed75

the VI ORB-SLAM [20]. In [19], the stereo method [2] was better than monocular VIO. In [21], Wang

et al. proposed a stereo DSO method. There was a higher reconstruction density than in feature-based

methods, and the vision-only algorithm was not sensitive to fast motion, while IMU measurements

could overcome this problem.

An energy-based method was proposed in [22]. This method combines IMU measurements with80

direct tracking of a parse subset of points in the image. Energy-based methods jointly optimize camera

and IMU parameters by a combine energy function. They can obtain more effective data which can

make the system more robust. In this paper, we combine stereo DSO methods and IMU pre-integration

in an energy function, and jointly optimize the parameters of the energy function.
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3. Direct sparse stereo visual inertial odometry85

Stereo VIO is a system based on the iterative minimization of photometric errors and IMU measure-

ment errors, such as in [23], the fused IMU method has several advantages. The proposed method is

on the basis of [19] and [21]. We use the nonlinear optimization method in the monocular VIDSO [19].

However we estimate depth by stereo alignment and provide the priori for IMU initialization, which is

different from [19]. We use the fixed baseline [21] for the front-end odometry of our method. We com-90

bine the photomatric error with IMU measurement errors to form a single optimization function, which

is different from [21]. An overview of the proposed system in this paper is shown in Fig 2. The system

starts with sensor measurements, in which direct coarse tracking and IMU measurements between two

contiguous frames are pre-integrated.

To improve VIO based on nonlinear optimization, the initialization process provides all crucial95

values, including pose, velocity, gravity, vector, gyroscope bias, and 3D feature location. VIO with lo-

calization models tightly fuses IMU pre-integration measurements, feature observations, and re-detected

features. Finally, the optimization module of the pose graph adopts the localization results as verified

geometrically and performs global optimization to eliminate drift. Every module has different running

rates and can perform real-time and reliable operation at all times. Compared to [21], we use global100

BA-based optimization to replace structure-less vision error items. The proposed method estimates

robot pose and scene depths by minimizing the energy function

E = λEstereo + EIMU (1)

where Estereo is the stereo photometric error and EIMU is the IMU measurements error.

The direct sparse stereo VIO system includes three main parts:

1. Coarse tracking is performed for each frame, and the nearest frame is estimated by combining the105

direct image alignment with the IMU measurement error.

2. An optimal visual inertial BA is used to estimate the geometry and poses of all active keyframes

when a new keyframe is created.

3. A sliding window is created, and old keyframes and 3D points are marginalized out using a Schur

complement.110

3.1. Notation

In this paper we will use the following notations: light lower case λ and bold lower case letters

denote vectors (t) and scalar (u) , and bold upper case letters denote matrices (R) . Upper case letters

are used to represent functions (I) .
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Figure 2: System overview.

Camera calibration metrics are expressed as K. Camera poses are expressed by matrices of the115

special Euclidean group Ti ∈ SE(3), which transform 3D coordinates from the camera coordinate

system to the world coordinate system. We denote Lie algebra elements as ξ ∈ se(3), and use them to

apply small increments to the 6D pose ξ′i−j = ξi−j � ξ := log(exp(ξi−j) exp(ξ)), where ξ ∈ R6.
∏

K and∏−1
K are used to denote camera projection and back-projection functions, respectively. In this paper,

a 3D point is represented by its image coordinate p and inverse depth dp relative to its host keyframe.120

The keyframe is the frame of the selected point—pixels with distinct gradient descent. The inverse

depth parameterization is good when the errors of the images are Gaussian distributions. We denote

the world as a fixed-inertial-coordinate frame with gravity acting in the negative Z direction axis. We

also assume that the transformation from the camera to IMU frame TIMU−cam is fixed and calibrated

in advance.125

3.2. Stereo direct sparse odometry

3.2.1. Direct image alignment

A point set, Pi, in reference frame Ii, is assumed to be observed in another frame Ij . The direct

image alignment can be formulated as

Eij =
∑
p∈Pi

ωp||Ij [p′]− Ii [p] ||γ , (2)
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where ||·||γ is the Huber norm and ωp is a weight that is inversely proportional to image gradient130

magnitude

ωp =
c2

c2 + ||∇Ii (p) ||22
, (3)

where c is a constant, and p′ is the projection of p in Ij , which is calculated by

p′ =
∏

K(Tji

∏−1
K (p, dp)), (4)

where dp is the inverse depth of p. The expression that transforms a point from frame i to frame j is

Tji =

 Rji t

0 1

 = T−1
j Ti. (5)

General direct methods tend to use as many pixels from each image as possible. Although this is

computationally intensive, the system can converge quickly. Therefore, in [4], a strategy was proposed135

to select a fixed number of points from each frame and evenly across all regions with a sufficient gradient.

The neighborhood of each selected point is used to calculate the photometric error in Eq. (2). In this

paper, we adopt the same method, but we use the stereo image pair to verify the selected points and

perform a depth initialization similar to [21].

Because the photometric error is calculated directly on the pixel intensities, it is sensitive to sudden140

illumination changes between consecutive frames. In the ideal case, as well as the camera response time

of each frame, the camera response function is directly accessible from the hardware [18], which can be

used to correct the results. If this information is not available, two parameters ai and bi for each image

are used to model the affine brightness change [4]. The energy function in Eq. (2) is then modified to

Eij =
∑
p∈Pi

∑
p̃∈Np

ωp̃||(Ij [p̃′]− bj)−
eaj

eai
(Ii [p̃]− bi)||γ , (6)

where Np is the eight-point pattern of p in [4] and p̃′ is the projection of the pattern point p̃ into Ij ,145

ai, bi, aj and bj are estimated in the windowed optimization.

The global photometric error contend of all points and frames is

Estereo =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Eij , (7)

where F is the set of keyframes in the current windows, Pi is the sparse set of points in keyframe i,

and obs(p) is the set of keyframes in F that can observe p.

3.2.2. Frame management150

The proposed method keeps an active window of Nf keyframes (Nf = 7 in our experiments ). Every

new frame is initially tracked for these reference frames (see Step 1 below). Then, it is either discarded
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Figure 3: Examples of depth maps used for initial frame tracking (EuRoC dataset). The top row is the

original images, the bottoms row is the color-coded depth maps.

or used to create a new keyframe. Once a new keyframe and the corresponding new points are created,

the total photometric error in Eq. (7) is optimized. Then, we marginalize one or more frames (see Step

2 below).155

Step 1.Coarse tracking and initialization. Whenever a new stereo frame is input to the system,

direct image alignment is used to track the latest keyframe in the sliding window. By using traditional

two-frame direct image alignment, we use a multi-scale image pyramid and a constant motion model

to initialize and track new frames. Fig. 3 shows examples of depth maps. A constant-motion model

is used to obtain the initial pose of a new frame, and all observable points in the sliding window are160

projected into the new frame. By minimizing the visual energy function in Eq. (6), the poses of all new

frames are optimized, while the value of depth is kept fixed.

In previous work [9][4][24], direct monocular visual odometry usually needed a certain pattern of

initial camera movement, and then the entire system could be initialized. In this paper, we use static

stereo matching to estimate a semi-dense depth map for the first frame. At this stage, the transfer factor165

of the affine luminance between stereo image pairs is unknown, and the corresponding relationship is

searched along the horizontal epipolar line. This step also provides a prior for the initialization of the

IMU.

In order to select evenly distributed points on the image and only select points with a sufficient

image gradient, the image is divided into small blocks, and an adaptive threshold is calculated for each170

block. If the selected point exceeds the threshold of a block, the point that has the largest absolute

gradient in its neighborhood is selected. Then, we obtain the inverse depth values of the point in the

first frame and tracked the second frame according to Eq. (6). Furthermore, we use the size of the

blocks that is proportional to the size of the image to improve the observability of the image. During the

8



Figure 4: Keyframe marginalization.

The black points are the marginalized points, the white points represent the candidated points, and the blue

points are the host points.

initialization, we use static stereo matching with normalized cross-correlation (NCC) to obtain depth175

between frames, which can increase the tracking accuracy.

Step 2.Keyframe creation and marginalization. When a new stereo frame is successfully tracked,

more key frames are obtained. Then the redundant keyframes are removed by marginalizing, and finally,

useful keyframes are obtained. There are three rules for determining keyframes:

1. Use the mean squared optical flow f := ( 1n

n∑
i=1

||p − p′||2) 1
2 to judge the change in the angle of180

view.

2. The occlusion is judged by the mean optical flow ft := ( 1n

n∑
i=1

||p− p′
t||2)

1
2 when the camera does

not rotate, where p′
t is the warped point position R = I3×3.

3. The relative brightness factor between two frames a := | log(eaj−aitjt
−1
i )| is used to judge the

change in exposure time of the camera.185

Now, the three vectors are obtained in initial alignment. If wff +wftft +waa > 1, a new keyframe

is selected. wf , wft and wa are the weighted versions of the three vectors.
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When the old points are removed from the active window by marginalization, the candidate points

are activated and added to the joint optimization. Each activated point is hosted in one keyframe and

is observed by several other keyframes in the active window. Every time an active point is observed in190

another keyframe, so it creates a photometric energy factor, defined as the inner part of Eq. (6)

E′
ij = ωp̃||(Ij [p′]− bj)−

eaj

eai
(Ii [p]− bi)||γ . (8)

Then Eq. (7) is written as

Estereo =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

E′
ij . (9)

Fig. 4 shows an example of a scene that highlights the active set of points and frames. In Fig. 4,

there are six old keyframes in the optimization window. The black points are the marginalized points,

the white points represent the candidate points, and the blue points are the host active points.195

3.3. IMU integration

In a vision system, IMU data can be used to observe the metric scale and gravity direction. Thus,

the parameters in our visual inertial system, including scale, gravity, velocity and gyroscope bias, are

jointly optimized together with the other values such as poses and scenes geometry. Next, we introduce

a nonlinear dynamic model. For each timestep i, we denotes the state si = [R,p,v,b] that consists200

of the rotation R, position p, velocity estimate v and IMU bias. The pose Bξ =(R,p) ∈ SE(3),

R ∈ SO(3), b = [bg ba] ∈ R6, v, bg, ba ∈ R3, where bg, ba are the gyroscope and accelerometer bias.

IMU is typically composed of a three-axis accelerometer and a three-axis gyroscope that measures the

acceleration and rotation rate of the IMU during motion. However, motion will lead to Gaussian white

noise, therefore, the measurement model of IMU can be written as205

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t) (10)

W ã(t) = RT
WB(t)(Wa(t)− Wg) + ba(t) + ηa(t)

where W denotes the word coordinate, B denotes that the IMU coordinate, Bω̃WB(t) is the instanta-

neous angular velocity of B relative to W expressed in B coordinate, W g is the gravity vector in W

coordinate.
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To obtain IMU pose, the differential form of kinematic model in the word coordinate is

Ṙ = Rω×, (11)

v̇ = a,

ṗ = v.

where ω× is the skew-symmetric metric.210

Of course, it can also be written as a form of integral, and the discrete form of the integral model

Eq. (11) at time (t+∆t) is

RWB(t+∆t) = RWB(t)Exp(BωWB(t)∆t) (12)

Wv(t+∆t) = Wv(t) + Wa(t)∆t

Wp(t+∆t) = Wp(t) + Wv(t)∆t+
1

2W
a(t)∆t2

According to Eq. (10), we can obtain Wa and BωWB . We drop the coordinate frame, and Eq. (12)

is reweitten as follows

R(t+∆t) = R(t)Exp((ω̃(t)− b
g
(t)− ηgd(t))∆t (13)

v(t+∆t) = v(t) + g∆t+R(t)(ã(t)− ba(t)− ηad(t))∆t

p(t+∆t) = p(t) + v(t)∆t+
1

2
g∆t2 +

1

2
R(t)(ã(t)− ba(t)− ηad(t))∆t2

where Exp (·) denotes composite mapping corresponding to [25] (Eq. (6)), ·d denotes discrete, which215

is the Gaussian error of the measured value during ∆t time period.

IMU measurements can reach a much higher frequency than the camera frame rate. Fig. 5 illustrates

the difference between IMU measurement rates and camera frame rate. We do not add independent
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residuals to each IMU measurements, instead, we integrate the measurements into a condensed IMU

measurement between the image frames. If the pose or bias estimation changes during optimization, in220

order to avoid returning frequently, we follow the pre-integration method proposed in [25]. We assumed

that the time of IMU measurements is ∆t, and we integrate the IMU measurements at discrete time

k = i and k = j (Fig. 5). The state value of j can be obtained from the state value integral at time i

Rj = Ri

j−1∏
k=i

Exp(
(
ω̃k − bgk − ηgdk

)
∆t) (14)

vj = vi + g∆tij +
j−1∑
k=i

Rk(ãk − bk − ηad
k )∆t

pj = pi +
j−1∑
k=i

[vk∆t+
1

2
g∆t2 +

1

2
Rk(ãk − bk − ηad

k )∆t2]

where ∆tij=̇
∑j−1

k=i ∆t.

Then the state at the next timestamp can be predicted. But in order to avoid to recompute Rk225

around each time integration, we use the relative motion increments to get the measurement model

between two adjacent keyframes.

∆Rij = RT
i Rj =

j−1∏
k=i

Exp(
(
ω̃k − bgk − ηgdk

)
∆t) (15)

∆vij = RT
i (vj − vi − g∆tij) =

j−1∑
k=i

∆Rik(ãk − ba
k − ηad

k )∆t

∆pij = RT
i (pj − pi − vi∆tij −

1

2
g∆t2ij) =

j−1∑
k=i

[∆vik∆t+
1

2
∆Rik(ãk − ba

k − ηad
k )∆t2]

The defined state quantities are independent of the state values Ri, vi, pi, Rj , vj , pj at time i, j.

However, since the drift value bgk of the angular velocity measurement and the drift value bak of the

acceleration measurement at the intermediate time exit, for convenience, assume bgk = bgi , b
a
k = bai ,230

k = i, i+1, · · ·, j − 1. Because bias also need to be estimated, this assumption reduces a large amount

of the estimated state values. The measurement is related to the bias and noise, the bias is assumed to

be known at time ti. Then we can obtain

∆Rij =̇ ∆R̃ijExp(−δϕij) (16)

∆vij =̇ ∆ṽij − δvij

∆pij =̇ ∆p̃ij − δpij

where ∆R̃ij=̇
j−1∏
k=i

Exp((ω̃k − bgk)∆t) is pre-intergrated rotation measurement, δϕij , δvij , δpij are the

Gaussian errors corresponding to rotation, velocity and position respectively.235
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Figure 6: Factor graph for the visual-inertial joint optimization before and after the marginalization of

keyframes.

Thus IMU error can be obtained:
δϕi,j

δvi,j

δpi,j

 =


∆R̃T

j−1,iδϕi,j−1 + Jj−1
r ηad

j−1∆t

δvi,j−1 −∆R̃i.j−1(ãi,j−1 − ba
i )δϕi,j−1∆t+∆R̃i.j−1η

ad
j−1∆t

δpi,j−1 + δvi,j−1∆t− 1
2∆R̃i.j−1(ãi,j−1 − ba

i )δϕi,j−1∆t2 + 1
2∆R̃i.j−1η

ad
j−1∆t2

 (17)

The bias from frame i to j will be updated by calculating the Jacobian matrix of the bias in Eq. (15)

to Eq. (16), and the bias error terms are:

δbg
i,j = bg

i,j − bg
i,j−1 (18)

δba
i,j = ba

i,j − ba
i,j−1

The error energy function is

EIMU (si, sj) =



δϕi,j

δvi,j

δpi,j

δbg
i,j

δba
i,j


:= (sj � ŝj)

T
∑−1

i,j−1
(sj � ŝj) (19)

where
∑−1

i,j−1 is the associated covariance matrix, the � obeys ξj� (ξ̂j)
−1.240

3.4. Window optimization

We optimize the poses, IMU-biases and velocities of the fixed number of the keyframes. Fig. 6(a)

shows a factor graph. Note that there should be several visual factors between the two keyframes. Each
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(b) EuRoC MH_03 Dataset

(a) EuRoC MH_01 Dataset

01 02 03 04 05

01 02 03 04 05

Figure 7: EuRoC Dataset. My method ( stereo VIDSO Algorithom ) generates a consistent global map, the

semi-dense depth map of using direct alignment and probabilistic instead of feature points method.

IMU factor connecting two successive keyframes based on pre-integration is described in Section 3.3.

Because the errors of pre-integration increases with time, the proposed method can ensure a time lower245

than 0.5s, and the marginalization process relationship is observed. In this paper, the result appears in

the stereo DSO frame rather than in the metric frame.

3.4.1. Nonlinear optimization formulation

We define a state vector

s = [cT , ξTi−1, ai, bi, s
T
i ]

T (20)

where c contains intrinsic parameters of the camera, and ξi−1 is the prior camera pose, ai, bi are the250

affine illumination parameters, and si = [Bξ,vi,bi] is the current IMU state.

We perform nonlinear optimization using the Gauss-Newton system Hδ = b. The error in Eq. (1)

can be written as

E =
λ

2
rTWr (21)

=
λ

2
[rTI rTIMU ]

 WI 0

0 WIMU

 rI

rIMU


where W is a diagonal weight matrix.

We define s� s′ to obey the operation ξ � ξ′ for the Lie algebra components.255
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(a) DSO Algorithom (c) Stereo VI DSO Algorithm(b) Stereo DSO Algorithom

Figure 8: Qualitative results on EuRoC dataset.

J is defined using the stacked residual vector r as

J =
dr(s� δs)

dδs
|δs=0, H = JTWJ, b = −JTWr (22)

where b is the Jacobian and H is the Hessian of E (Eq. (21)). Then we use δ = H−1b to update.

In fact, the camera photometric error Estereo and IMU energy error EIMU do not have common

bias and residuals. Therefore, we divide H and b into two independent terms

H = Hstereo+HIMU ,b = bstereo + bIMU . (23)

Since the current relative pose estimation originates from inertia residuals, it is necessary to use the260

IMU relative pose in the metric framework. The IMU residuals cause

H′
IMU = J′T

IMUWIMUJ
′
IMU ,b

′
IMU = −J′T

IMUWIMUr. (24)

However, in the joint optimization frame, we need to obtain HIMU and bIMU based on the state

definition in Eq. (23). According to the difference of the two states in the pose representation, we can

obtain Jrel

HIMU = JT
rel ·H′

IMU · Jrel ,bIMU = JT
rel · b′

IMU (25)

The computation of Jrel refers to [19].265

3.4.2. Marginalization

Fig. 6(b) shows the procedure of marginalization. In order to achieve a Gauss-Newton update, we

perform the marginalization for older keyframes. This process means that all variables corresponding

to the current frame (including pose and velocity) are marginalized out using the Schur complement.
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Figure 9: The qualitative compare results on EuRoC V203 dataset. In the legend, the V203 MonoDSO is

the Mono VIDSO method.
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In visual factor marginalization, the remaining items affecting the system sparsity are deleted, and270

all points are first marginalized in the keyframe before the keyframe itself is marginalized [4]. Then,

the keyframe is marginalized and moved out of the active windows. Because the factors caused by

marginalization require that the linearization points of all connected variables remain fixed, we apply

the method in [4] approximately to further linearize the energy around the linearization point. In order

to maintain system consistency, it is important that the Jacobian evaluates the same value for the275

variables associated with the marginalization factor. Otherwise the zero space is eliminated. Thus, we

adopt “First Estimates Jacobians.” If we use sα to denote the state variables that we want to keep in

the optimization and denote sβ that we want to marginalized out, the Gaussian-Newton system can be

write as follows

 Hαα Hαβ

Hβα Hββ

 δsα

δsβ

 =

 bα

bβ

 (26)

Multiply the second line by HαβH
−1
ββ and subtract it from the first element, then the Eq. (26)280

becomes

(Hαα −HαβH
−1
ββHαβ)︸ ︷︷ ︸

Ĥαα

δsα = bα −HαβH
−1
ββbβ︸ ︷︷ ︸

b̂α

(27)

Then the states sβ marginalized out but the information of sβ will be preserved and utilized.

4. Results

We evaluated our method using the public EuRoC dataset (see Fig. 7). The images were provided by

the required calibration parameters and groundtruth based on motion capture. The dataset contained285

two calibrated stereo video sequences corresponding to IMU measurements, and was recorded using

a Skybotix VI sensor. We compared it with DSO, stereo DSO and other visual-inertial system, and

evaluated the effect of the proposed method and parameters selection.

4.1. Qualitative comparison on large trajectories

Since the EuRoC datasets sequences set moves faster, there is large jitter and low partial visibility,290

which is difficult for visual-only SLAM. The proposed method in this paper improves the above problem

on the basis of DSO. Fig. 8 shows the comparison results of 3D reconstruction effects for the proposed

stereo VIDSO method, visual-only DSO and stereo DSO. The results show that the proposed method

is more effective than the visual-only method. In Fig. 8(a), Fig. 8(b), the 3D reconstruction of stereo
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Figure 10: The estimated trajectory results on EuRoC MH03 dataset. In the legend, MH03 ORB is the

stereo VIORB method, the MH03 MonoDSO is the Mono VIDSO method.
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Figure 11: The estimated trajectory results on EuRoC V101 dataset. In the legend, V101 ORB is the

stereo VIORB method, the V101 MonoDSO is the Mono VIDSO method.
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Figure 12: The estimated trajectory results on EuRoC V201 dataset. In the legend, V201 ORB is the

stereo VIORB method, the V201 MonoDSO is the Mono VIDSO method.
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Table 1: Accuracy of the RMSE on the EuRoC dataset.

Sequence OKVIS Stereo VIORB Mono VIDSO Proposed

MH 01 easy 0.190942 0.041853 0.034971 0.019273

MH 02 easy 0.109778 0.033052 0.041853 0.029431

MH 03 medium 0.144528 0.054798 0.059897 0.032990

MH 04 difficult 0.181759 0.126432 0.1327143 0.102714

MH 05 difficult 0.079129 0.049930 0.082149 0.066954

V 1 01 easy 0.059106 0.084286 0.063199 0.055838

V 1 02 medium 0.039165 0.060481 0.019187 0.120850

V 1 03 difficult 0.125028 0.067898 0.300904 0.169414

V 2 01 easy 0.061776 0.050130 0.075491 0.041523

V 2 02 medium 0.094641 0.078541 0147733 0.046415

V 2 03 difficult 1.921737 0.357904 0.166868 0.155817

DSO method outperforms the 3D reconstruction of DSO. The scene information in Fig. 8(c) is more295

clearly than that of in Fig. 8a and Fig. 8(b). The stereo vision SLAM system recovers the scale from

static stereo matching, solves the problem of scale uncertainty in the monocular SLAM system, and

improves the accuracy and robustness. In order to achieve the comparison, we also modified the program

to achieve monocular visual-inertial DSO (mono VIDSO). Fig. 9 shows the comparison between the

proposed method and the mono VIDSO [19] method. We use the absolute pose error (APE) and300

relative pose error (RPE) metrics to evaluate the competing algorithms. APE is often used to measure

estimation error along a trajectory. The estimated value and reference value are directly compared if

pose correspondence is given. Then statistics for the whole trajectory are calculated, and they are used

to measure the global performance of a trajectory. The lower the APE is, the better the performance.

The comparison results in terms of APE are shown in Fig. 9(a) and Fig. 9(b). RPE reflects the local305

localization accuracy. We calculate the RPE every one meter. In Fig. 9(c) and Fig. 9 (d), error

magnitude is coded in pseudocolor. Fig. 9(e) shows the trajectories estimated by mono VIDSO and the

proposed method with respect to the reference trajectory, and we can obviously see that the trajectory

of the proposed method is closer to the groundtruth. In order to directly compare the accuracy of the

proposed method with the monocular method in terms of scale recovery, we draw the APE and RPE310

thermodynamic comparison chart. The smaller the color difference is, the more similar the value. The
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Table 2: Accuracy of the APE on the EuRoC dataset.

Sequence OKVIS Stereo VIORB Mono VIDSO Proposed

MH 01 easy 0.164533 0.039492 0.031964 0.016544

MH 02 easy 0.325944 0.071015 0.227868 0.066134

MH 03 medium 0.135089 0.047799 0.053473 0.029635

MH 04 difficult 0.177335 0.076432 0.089257 0.072714

MH 05 difficult 0.072911 0.059745 0.072949 0.060715

V 1 01 easy 0.055121 0.052416 0.051721 0.051811

V 1 02 medium 0.034487 0.060481 0.055843 0.055441

V 1 03 difficult 0.212638 0.133869 0.212638 0.136592

V 2 01 easy 0.055524 0.054945 0.055301 0.036858

V 2 02 medium 0.088461 0.059489 0.126172 0.039465

V 2 03 difficult 1.741872 0.152617 0.155504 0.139130

colder the color is, the smaller the scale error.

4.2. Long term drift evaluation

In this section, we compare the performance of our proposed method with state-of-the-art SLAM

algorithms that use IMU, such as stereo VIORB SLAM [20] and OKVIS [15]. We study monocular315

inertial DSO (named mono VIDSO in this paper) [19] and compare it with our proposed method. Fig.

10-12 show that the tightly integrated and direct VIO method proposed in this paper outperforms

several other methods in the three indoor datasets. The video datasets MH 03, V1 01 and V2 01 exist

obvious dithering at the beginning of the trajectories, and IMU is able to respond to this drift. In

these figures, the groundtruth of EuRoC dataset is obtained from GPS and other sensors. They show320

the superiority of our proposed algorithm. The trajectory estimated by OKVIS and stereo VIORB is

close to the groundtruth trajectory, which demonstrates that the pose estimated by the stereo camera

is better than that by monocular camera. The trajectory estimated by our method is the closest to the

groundtruth, and this demonstrates that the proposed method has better robustness than mono VIDSO,

OKVIS and stereo VIORB.325

Fig. 13 shows the results of the proposed method, stereo VIORB, OKVIS and mono VIDSO com-

pared with groundtruth. The maximum trajectory error of OKVIS is 0.242, the minimum trajectory
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error is 0.023, and the mean error is 0.132. Fig. 13 (b), Fig. 13(c) and Fig. 13(d) are the trajectory

errors of the stereo VIORB, OKVIS, mono VIDSO and proposed method, respectively.

Fig. 14 shows the APE values of stereo VIORB, OKVIS, mono VIDSO and the proposed method330

compared with groundtruth. Fig. 14(a) compares the four methods in terms of APE values and Fig.

14(b) is the box chart of APE. Fig. 14(c) compares the four methods in terms of the error statistics

of standard deviation (std), root mean square error (rmse), minimum, median, mean and maximum.

Based on these results, one can conclude that the performance of the proposed method is better than

stereo VIORB, OKVIS, mono VIDSO. In order to obtain an accurate evaluation, we run each sequence335

of the MH03 dataset 10 times using our method. We compare the proposed method with stereo VIORB,

OKVIS, mono VIDSO, and the results prove the robustness of our method. Fig. 15(a) is the root mean

square error (RMSE) and Fig. 15(b) is the RPE. The RMSE is the square root that is the ratio of the

sum of the error square for the observed value, the true value and the observation times. It is used to

measure the deviation between the observed value and the true value. The smaller the RMSE value is,340

the smaller the deviation. Fig. 15(a) demonstrates that the RMSE value of the proposed method is the

smallest at around 0.03. Both the mono VIDSO and stereo VIORB have RMSE of around 0.06. The

OKVIS’s RMSE error is much larger at 0.16. We attribute the superior performance of our method to

the introduction of IMU that can provide a reliable scale estimate. Fig. 15(b) shows that the error of

the proposed method is the smallest among all competing methods. To further prove the superiority345

of our algorithm, we run experiments on all the EuRoC dataset sequences. Table 1 shows the RMSE

values compared with stereo VIORB SLAM, OKVIS, mono VIDSO. Table 1 demonstrates that the

proposed method can perform well in the most of the dataset sequences. However, in the MH 05 and

V1 03, stereo VIORB method performs better than our method, and OKVIS method performs better

in the V1 02. The main reason is that stereo VIORB and OKVIS use loop-closures. Table 2 shows the350

comparison in terms of RPE. The proposed method performs well in the most of the dataset sequences.

However, in the MH 03, V1 01 and V2 01, stereo VIORB method performs better than the proposed

method, and OKVIS method performs better in the V1 02. The main reason is that our method

selects 2000 map point to optimize in each frame, and leads to local localization bad in a scene without

significant gradient changes. Finally, to tested the system thoroughly, we also run on KITTI dataset355

sequence. Our method can real-time tracking of stereo frames and build a 3D map. Fig. 16 shows the

result of our method on KITTI dataset.
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Figure 13: The comparison of trajectory errors between these four methods and groundtruth on EuRoC

MH 03 dataset.
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Figure 14: The comparison results of APE on EuRoC MH 03 dataset.
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(a) Original image (b) Depth image (c) Semi-dense map

Figure 16: The result of KITTI (2011.9.26 drive 0001 sync) dataset.

5. Conclusion

We proposed a novel direct sparse stereo vision-inertial odometry method. The fusion of an IMU

and stereo vision can compensate for their individual disadvantages. Stereo vision allows the system to360

compensate for long-term IMU bias drift, while short-term IMU constraints can overcome non-convexity

in the photometric tracking formula, and allow for large inter-frame motion or interval tracking without

visual information. The proposed method created a semi-dense map with good observability, and

accurate 3D reconstruction of the environment. In this paper, we focused on the front-end design,

according to the analysis of the experimental results, the error will accumulate during the SLAM365

process. In order to solve this problem, we will work on the SLAM back-end that can improve the

robustness of the optimization with loop closure detection in the future work. In this paper, we have

focused on indoor localization and mapping in the experimental evaluation of our method using EuRoC

datasets and outdoor. However, we will consider closure detection in the future work.
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