1,630 research outputs found

    Operational Modal Analysis of Super Tall Buildings by a Bayesian Approach

    Get PDF
    Structural health monitoring (SHM) has attracted increasing attention in the past few decades. It aims at monitoring the existing structures based on data acquired by different sensor networks. Modal identification is usually the first step in SHM, and it aims at identifying the modal parameters mainly including natural frequency, damping ratio and mode shape. Three different field tests can be used to collect data for modal identification, among which, ambient vibration test is the most convenient and economical one since it does not require to measure input information. This chapter will focus on the operational modal analysis (OMA), i.e. ambient modal identification of four super tall buildings by a Bayesian approach. A fast frequency domain Bayesian fast fourier transform (FFT) approach will be introduced for OMA. In addition to the most probable value (MPV) of modal parameters, the associated posterior uncertainty will be also investigated analytically. The field tests will be presented and the difficulties encountered will be discussed. Some basic dynamic characteristics will be investigated and discussed. The studies will provide baseline properties of these super tall buildings and provide a reference for future condition assessments

    Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions

    Full text link
    Graphene-based vertical heterostructures, particularly stacks incorporated with other layered materials, are promising for nanoelectronics. The stacking of two model Dirac materials, graphene and topological insulator, can considerably enlarge the family of van der Waals heterostructures. Despite well understanding of the two individual materials, the electron transport properties of a combined vertical heterojunction are still unknown. Here we show the experimental realization of a vertical heterojunction between Bi2Se3 nanoplate and monolayer graphene. At low temperatures, the electron transport through the vertical heterojunction is dominated by the tunneling process, which can be effectively tuned by gate voltage to alter the density of states near the Fermi surface. In the presence of a magnetic field, quantum oscillations are observed due to the quantized Landau levels in both graphene and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an exotic gate-tunable tunneling resistance under high magnetic field, which displays resistance maxima when the underlying graphene becomes a quantum Hall insulator

    Systems biology in the frontier of cancer research: a report of the Second International Workshop of Cancer Systems Biology

    Get PDF
    The report summarizes the Second International Workshop of Cancer Systems Biology held on July 5-6, 2012 in Changchun, China. The goal of the workshop was to bring together cancer researchers with different backgrounds to share their views about cancer and their experiences in fighting against cancer, and to gain new and systems-level understanding about cancer formation, progression, diagnosis, and treatment through exchanging ideas

    Knockout of Pannexin-1 Induces Hearing Loss

    Get PDF
    Mutations of gap junction connexin genes induce a high incidence of nonsyndromic hearing loss. Pannexin genes also encode gap junctional proteins in vertebrates. Recent studies demonstrated that Pannexin-1 (Panx1) deficiency in mice and mutation in humans are also associated with hearing loss. So far, several Panx1 knockout (KO) mouse lines were established. In general, these Panx1 KO mouse lines demonstrate consistent phenotypes in most aspects, including hearing loss. However, a recent study reported that a Panx1 KO mouse line, which was created by Genentech Inc., had no hearing loss as measured by the auditory brainstem response (ABR) threshold at low-frequency range (\u3c 24 kHz). Here, we used multiple auditory function tests and re-examined hearing function in the Genentech Panx1 (Gen-Panx1) KO mouse. We found that ABR thresholds in the Gen-Panx1 KO mouse were significantly increased, in particular, in the high-frequency region. Moreover, consistent with the increase in ABR threshold, distortion product otoacoustic emission (DPOAE) and cochlear microphonics (CM), which reflect active cochlear amplification and auditory receptor current, respectively, were significantly reduced. These data demonstrated that the Gen-Panx1 KO mouse has hearing loss and further confirmed that Panx1 deficiency can cause deafness
    • …
    corecore