3,839 research outputs found

    Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species

    Get PDF
    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata, and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the effects of their life history traits. Recent population fragmentation and disturbances arising from human activities could further endanger genetic diversity in mangrove trees

    Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals

    Full text link
    At the organic-inorganic interface of nanocrystals, electron-phonon coupling plays an important but intricate role in determining the diverse properties of nanomaterials. Here, it is reported that highly doping of Yb3+ ions within the nanocrystal host can form an energy-migration network. The networking state Yb3+ shows both distinct Stark splitting peak ratios and lifetime dynamics, which allows quantitative investigations of quenching and thermal activation of luminescence, as the high-dimensional spectroscopy signatures can be correlated to the attaching and de-attaching status of surface molecules. By in-situ surface characterizations, it is proved that the Yb-O coordination associated with coordinated water molecules has significantly contributed to this reversible effect. Moreover, using this approach, the prime quencher -OH can be switched to -CH in the wet-chemistry annealing process, resulting in the electron-phonon coupling probability change. This study provides the molecular level insights and dynamics of the surface dark layer of luminescent nanocrystals

    Statics and dynamics of single DNA molecules confined in nanochannels

    Get PDF
    The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the polymer physics

    Exploration of High Entropy Ceramics (HECs) with Computational Thermodynamics - A Case Study with LaMnO3±δ

    Get PDF
    The concept of the new category materials high entropy ceramics (HECs) has been proposed several years ago, which is directly borrowed from high entropy alloys (HEAs). It quickly attracts a lot of interests and displays promising properties. However, there is no clear definition of HECs differentiating it from HEAs, as it is still in its early research stage. In the current work, we are trying to use the classic perovskite LaMnO3±δ (LMO) to demonstrate the fundamental differences between HECs and HEAs. We have adopted the integrated defect chemistry and CALPHAD approach to investigate the mixing behavior and how it is affected by the control parameters, i.e. PO2, T, and composition. We have developed a new way to visualize the mixing behavior of the species including the cations, anions, and defects (vacancies), which linked the mixing behavior to the thermo-chemical properties including enthalpy, entropy, and Gibbs energy. It was found that entropy plays the most important role on the mixing behavior in LMO. The present work paves the way for the HECs investigation and the design of new HECs for the various applications

    Episodic Random Accretion and the Cosmological Evolution of Supermassive Black Hole Spins

    Full text link
    The growth of supermassive black holes (BHs) located at the centers of their host galaxies comes mainly from accretion of gas, but how to fuel them remains an outstanding unsolved problem in quasar evolution. This issue can be elucidated by quantifying the radiative efficiency parameter (η\eta) as a function of redshift, which also provides constraints on the average spin of the BHs and its possible evolution with time. We derive a formalism to link η\eta with the luminosity density, BH mass density, and duty cycle of quasars, quantities we can estimate from existing quasar and galaxy survey data. We find that η\eta has a strong cosmological evolution: at z~2, η≈0.3\eta \approx 0.3, and by z≈0z\approx 0 it has decreased by an order of magnitude, to η≈0.03\eta\approx 0.03. We interpret this trend as evolution in BH spin, and we appeal to episodic, random accretion as the mechanism for reducing the spin. The observation that the fraction of radio-loud quasars decreases with increasing redshift is inconsistent with the popular notion that BH spin is a critical factor for generating strong radio jets. In agreement with previous studies, we show that the derived history of BH accretion closely follows the cosmic history of star formation, consistent with other evidence that BHs and their host galaxies coevolve.Comment: 4 page, 2 color figures. Accepted by ApJ

    Experimental realization of large-alphabet quantum key distribution protocol using orbital angular momentum entanglement

    Full text link
    We experimentally demonstrate a quantum key distribution (QKD) protocol using photon pairs entangled in orbit angular momentum (OAM). In our protocol, Alice and Bob modulate their OAM states on each entangled pair with spatial light modulators (SLMs), respectively. Alice uses a fixed phase hologram in her SLM, while Bob designs NN different suitable phase holograms and uses them to represent his NN-based information in his SLM. With coincidences, Alice can fully retrieve the key stream sent by Bob without information reconciliation or privacy amplification. We report the experiment results with N=3 and the sector states with OAM eigenmodes l=1 and l=-1. Our experiment shows that the coincidence rates are in relatively distinct value regions for the three different key elements. Alice could recover fully Bob's keys by the protocol. Finally, we discuss the security of the protocol both form the light way and against the general attacks
    • …
    corecore