2,200 research outputs found

    U(2,2) gravity on noncommutative space with symplectic structure

    Full text link
    The classical Einstein's gravity can be reformulated from the constrained U(2,2) gauge theory on the ordinary (commutative) four-dimensional spacetime. Here we consider a noncommutative manifold with a symplectic structure and construct a U(2,2) gauge theory on such a manifold by using the covariant coordinate method. Then we use the Seiberg-Witten map to express noncommutative quantities in terms of their commutative counterparts up to the first-order in noncommutative parameters. After imposing constraints we obtain a noncommutative gravity theory described by the Lagrangian with up to nonvanishing first order corrections in noncommutative parameters. This result coincides with our previous one obtained for the noncommutative SL(2,C) gravity.Comment: 13 pages, no figures; v2: 14 pages, clarifications and references added; v3: 16 pages, title changed, clarifications and references added; v4: 17 pages, clarifications added, this final version accepted by Physical Review

    An Investigation of Degradation of Mechanical Behaviour of Prestressing Strands Subjected to Chloride Attacking

    Get PDF
    Corrosion of reinforcing and prestressing steel due to chloride contamination is one of the primary causes of deterioration of concrete structures. A review of published literatures shows that the research on the deterioration of mechanical properties of reinforcing steel is more than that on prestressing strands, even though the corrosion of prestressing strands may trigger structural collapse without warnings due to higher stress levels in the steel. This paper aims to investigate the degradation of mechanical behaviour of corroded prestressing strands. Details of a comprehensive experiment designed to examine the mechanical behaviour of corroded prestressing strands in concrete structural members are presented. A micromechanical damage model for failure mechanism of corroded prestressing strands is proposed, and a model for damage factor is derived. Based on these models, a constitutive model for corroded prestressing strands is developed and verified with test results. It is found in the paper that both the strength and ductility of corroded prestressing strands decrease with the increase of corrosion and that the hemispherical model for the pit shape is more appropriate for the prediction of strength reduction of corroded prestressing strands. The paper concludes that the constitutive model developed in the paper can be used to predict the mechanical behaviour of corroded prestressing strands accurately, paving the way for the assessment of corrosion-induced flexural failure of prestressed concrete structures

    Heterogeneity in structurally arrested hard spheres

    Get PDF
    When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states

    The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations

    Full text link
    The atmospheres of exoplanets are commonly studied by observing the transit of the planet passing in front of its parent star. The obscuration of part of the stellar disk during a transit will reveal aspects of its surface structure resulting from general centre-to-limb variations (CLVs). These become apparent when forming the ratio between the stellar light in and out of transit. These phenomena can be seen particularly clearly during the progress of a penumbral lunar eclipse, where the Earth transits the solar disk and masks different regions of the solar disk as the eclipse progresses. When inferring the properties of the planetary atmosphere, it is essential that this effect originating at the star is properly accounted for. Using the data observed from the 2014-April-15 lunar eclipse with the ESPaDOnS spectrograph mounted on the Canada France Hawaii Telescope (CFHT), we have obtained for the first time a time sequence of the penumbral spectra. These penumbral spectra enable us to study the centre-to-limb variations of solar Fraunhofer lines when the Earth is transiting Sun. The Na i and Ca ii absorption features reported from previous lunar eclipse observations are demonstrated to be CLV features, which dominate the corresponding line profiles and mask possible planetary signal. Detecting atmospheric species in exoplanets via transit spectroscopy must account for the CLV effect.Comment: 9 pages, 11 figures, accepted, A&

    Maximally localized states and quantum corrections of black hole thermodynamics in the framework of a new generalized uncertainty principle

    Get PDF
    As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states --- the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.Comment: 27 pages, 10 figures, 4 tables; v2: 30 pages, sections 3-6 substantially revised but conclusions unchanged; v3: 27 pages, clarifications added; v4: 29 pages, clarifications and references added, final version to appear in Advances in High Energy Physic

    Kosterlitz-Thouless phase transition and reentrance in an anisotropic 3-state Potts model on the generalized Kagome lattice

    Full text link
    The unusual reentrant phenomenon is observed in the anisotropic 3-state Potts model on a gen- eralized Kagome lattice. By employing the linearized tensor renormalization group method, we find that the reentrance can appear in the region not only under a partial ordered phase as commonly known but also a phase without a local order parameter, which is uncovered to fall into the uni- versality of the Kosterlitz-Thouless (KT) type. The region of the reentrance depends strongly on the ratios of the next nearest couplings {\alpha} = J2 /|J1 | and {\beta} = J3 /|J1 |. The phase diagrams in the plane of temperature versus {\beta} for different {\alpha} are obtained. Through massive calculations, it is also revealed that the quasi-entanglement entropy can be used to accurately detect the KT transition temperature
    • …
    corecore