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As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR
mixing, some significant physical concepts and quantities aremodified or corrected correspondingly.On the one hand,we derive the
maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in
our previous work. On the other hand, in the framework of this new GUPwe calculate quantum corrections to the thermodynamic
quantities of the Schwardzschild black hole, such as theHawking temperature, the entropy, and the heat capacity, and give a remnant
mass of the black hole at the end of the evaporation process.Moreover, we compare our results with that obtained in the frameworks
of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration
of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can
greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to
a radical rather than a tiny influence to the Hawking radiation.

1. Introduction

To unify general relativity and quantum mechanics is one of
the most difficult tasks because the existing quantum gravity
theories are ultraviolet divergent and thus nonrenormaliz-
able. Various candidates of quantum gravity, including string
theory [1–6], loop quantum gravity [7], and quantum geome-
try [8], have pointed out that it is essential to introduce a fun-
damental length scale of the order of the Planck length and
then the corresponding momentum provides a natural UV
cutoff. Furthermore, Gedanken experiments of black holes
[9] tend to support the existence of a minimal length. One
of the approaches to introduce a fundamental length scale is
to modify the Heisenberg uncertainty principle (HUP) and
then to obtain the so-called generalized uncertainty principle

(GUP) [10–14] whose commutation relations between posi-
tion and momentum operators on a Hilbert space are no
longer constants but depend in general on position and
momentumoperators. In theHUP framework, the restriction
upon the position measurement precision does not exist. On
the contrary, in the GUP framework that can be regarded as
a phenomenological description of quantum gravity effects,
a minimal position measurement precision is predicted with
the order of the Planck length ℓPl = √𝐺ℏ/𝑐3 ∼ 10

−33 cm
below which the spacetime cannot be probed effectively
[12–15]. In other words, a finite resolution appears in the
spacetime.

The idea of GUP has been utilized tomodify fundamental
physical concepts and to analyze the gravity effects on
fundamental physical quantities, such as maximally localized
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states [10, 16] and energy spectra and wavefunctions of some
interesting quantum systems [17–24], where the physical
states displaying the minimal length uncertainty and the
quantum corrections to energy spectra and wavefunctions
have been calculated.

On the other hand, the recent applications of GUP to the
investigation of quantum black holes have attracted much
attention and several achievements have been made [25–34].
For instance, according to Hawking’s black hole thermody-
namics [35, 36], a small black hole can radiate continuously
and the black hole temperature can rise infinitely during
the whole evaporation process until the black hole mass
decreases to zero. However, in the framework of GUP the
minimal length scale provides a natural restriction that the
mass of a black hole cannot be less than the scale of the
Planck mass at the end of the evaporation process, and the
black hole remnant at the final stage of evaporation has zero
entropy, zero heat capacity, and a finite temperature. More-
over, the entropy of a black hole does not strictly obey the
area theorem but contains an additional logarithmic correc-
tion.

There exist some typical forms of GUP that give rise
to modifications of basic concepts in quantum mechanics
and to quantum gravity effects on black holes. Here we
merely mention two of them that are intimately related to the
present paper. One is called the quadratic form [10] (noted
by GUP

0
in the figures, figure captions, and tables for the

sake of a concise presentation) in which the commutators
of position and momentum operators contain an additional
quadratic term of momentum operator. The other is called
the exponential form [37] (noted by GUP

1
for the same

purpose as GUP
0
) in which the commutators depend on an

exponential function of the square of momentum operator.
In fact, the former is just the first-order approximation of
the Taylor expansion of the latter in the Planck length. Based
on the quadratic GUP, the maximally localized states are
derived [10] and then developed [16] for a class of quite
general GUPs. In the framework of the exponential GUP, the
quantum corrections to the thermodynamic quantities of the
Schwardzschild black hole are computed and some interest-
ing results related to the black hole evaporation process are
obtained, such as the faster evaporation and larger remnant
mass than that deduced in the framework of the quadratic
GUP.

In the present paper we revisit the maximally localized
states and the quantum corrections to the thermodynamic
quantities of the Schwardzschild black hole in the framework
of our newly proposed GUP [38], the so-called improved
exponential GUP (noted by GUP

𝑛
for the same purpose as

GUP
0
and GUP

1
). The motivation emerges directly from

our recent interpretation that the origin of the cosmological
constant problem may arise from the GUP issue. Through
choosing a suitable index 𝑛 introduced in our GUP and
considering the UV/IR mixing effect, we can give the cosmo-
logical constant that coincides exactly with the experimental
value provided by the most recent Planck 2013 results [39].
We are curious about how the maximally localized states
are modified and how the thermodynamic quantities of the
Schwardzschild black hole are corrected in the framework of

our specific GUP. Following the scenario proposed in [16], we
obtain for our GUP the maximally localized states in terms
of special functions. On the other hand, besides the expected
outcomes that the corrected Hawking temperature, entropy,
and heat capacity are distinct from that in the frameworks
of other GUPs, our significant consequences lie on the two
observations: one is that the evaporation rate is extremely
small; in other words, the lifetime of black holes is remarkably
prolonged, when the UV/IR mixing effect is particularly
considered, and the other observation is that the larger the
index 𝑛 is, the less radiation the Schwardzschild black hole
emits.

The paper is arranged as follows. In the next section,
we briefly review our improved exponential GUP with a
particularly introduced positive integer 𝑛, give its minimal
length and corresponding momentum, and then derive the
maximally localized states. Based on our GUP, we work out
in Section 3 the correctedHawking temperature, entropy, and
heat capacity of the Schwarzschild black hole and compare
our results with that computed in the frameworks of the
Hawking proposal, the quadratic GUP, and the exponential
GUP. We then turn to the Hawking evaporation process
of the Schwarzschild black hole and calculate the quantum
corrections to the evaporation rate and the decay time
in Section 4, where we focus on the significant difference
between the situations without and with the consideration of
the UV/IR mixing effect. Finally, we make a brief conclusion
in Section 5.

2. The Improved Exponential GUP and Its
Corresponding Maximally Localized States

2.1. Representation of Operators and the Minimal Length. In
[38] we propose our improved exponential GUP as follows:

[𝑋, �̂�] = 𝑖ℏ exp(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

�̂�
2𝑛
) , (1)

where 𝛼 is a dimensionless parameter with the order of unity
that describes the strength of gravitational effects and 𝑛 is
a positive integer. Note that the parameter 𝛽 introduced in
our original form (see [38]) has been set to be 𝛼

2
ℓ
2

Pl/ℏ
2 in

order for us tomake a direct comparisonwith the exponential
GUP [37] which is only our special case for 𝑛 = 1. We point
out that 𝛼2ℓ2Pl/ℏ

2 is very small due to (ℓPl/ℏ)
2
= (𝑀Pl𝑐)

−2
≈

(10
19 GeV)−2 when 𝛼 is taken to be the order of unity in our

discussion of micro-black holes. Therefore, the deviation of
our GUP from theHUP is kept small because themomentum
of a particle is less than the Planck scale even if it is relatively
large in some sense, which can be seen obviously from the
Taylor expansion of our GUP. For phenomena at the other
energy scales much less than the Planck one, such as those
analyzed in [20, 40], 𝛼 can have a large upper bound. As 𝛼
being unity corresponds to the phenomena with momenta
less than the Planck scale but much larger than that of
those phenomena investigated, for instance, in [20, 40], our
setup of 𝛼 has no conflict with the present experimental
data.
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In the momentum space the position and momentum
operators can be represented as

𝑋𝜓 (𝑝) = 𝑖ℏ exp(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝜕
𝑝
𝜓 (𝑝) ,

�̂�𝜓 (𝑝) = 𝑝𝜓 (𝑝) ,

(2)

and the symmetric condition [10],

(⟨𝜙
 𝑋)

𝜓⟩ = ⟨𝜙
 (𝑋

𝜓⟩) ,

(⟨𝜙
 �̂�)

𝜓⟩ = ⟨𝜙
 (�̂�

𝜓⟩) ,

(3)

gives rise to the following scalar product of wavefunctions
and the orthogonality and completeness of eigenstates:

⟨𝜙 | 𝜓⟩ = ∫

+∞

−∞

𝑑𝑝 exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝜙
∗
(𝑝) 𝜓 (𝑝) ,

⟨𝑝 | 𝑝

⟩ = exp(

𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝛿 (𝑝 − 𝑝


) ,

1 = ∫

+∞

−∞

𝑑𝑝 exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)
𝑝⟩ ⟨𝑝

 ,

(4)

where |𝑝⟩ and |𝑝

⟩mean momentum eigenstates and 𝜓(𝑝) ≡

⟨𝑝 | 𝜓⟩ stands for a wavefunction in the momentum space.
From (1) we get the uncertainty relation

(Δ𝑋) (Δ𝑃) ≥
ℏ

2
⟨exp(

𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

�̂�
2𝑛
)⟩ . (5)

In light of the properties ⟨�̂�2𝑛⟩ ≥ ⟨�̂�
2
⟩
𝑛 and ⟨�̂�

2
⟩ = ⟨�̂�⟩

2
+

(Δ𝑃)
2, we reduce the uncertainty relation to be

(Δ𝑋) (Δ𝑃) ≥
ℏ

2
exp{

𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

(⟨�̂�⟩
2

+ (Δ𝑃)
2
)

𝑛

} . (6)

For simplicity, we take ⟨�̂�⟩ = 0. By using the definition
of the Lambert 𝑊 function [41], we write the saturate
uncertainty relation as follows:

𝑊(𝑢) exp (𝑊 (𝑢)) = 𝑢, (7)

where we have set up 𝑊(𝑢) ≡ −2𝑛(𝛼ℓPl/ℏ)
2𝑛
(Δ𝑃)
2𝑛 and

𝑢 ≡ −2𝑛(𝛼ℓPl/2Δ𝑋)
2𝑛. The Lambert function remains single-

valued when it is restricted to be not less than −1 in the range
−1/𝑒 ≤ 𝑢 ≤ 0. As a result, it is straightforward to give the
minimal length from (7),

(Δ𝑋)
0
=

𝛼ℓPl
2

(2𝑛𝑒)
1/2𝑛

, (8)

and its corresponding momentum measurement precision,

(Δ𝑃)Crit = (
1

2𝑛
)

1/2𝑛
ℏ

𝛼ℓPl
, (9)

which can also be regarded as the critical value to distinguish
the sub- and trans-Planckian modes [42].

We make two comments on the minimal length and the
critical momentum. The first is that (Δ𝑃)Crit is certainly in
the order of the Planck momentum, (Δ𝑃)Crit ∼ 𝑃Pl = 𝑀Pl𝑐,
when (Δ𝑋)

0
is in the order of the Planck length, (Δ𝑋)

0
∼ ℓPl.

The second comment that further demonstrates the minimal
length and the critical momentum is that the minimal length
never goes to a macroscopic order of magnitude even for a
quite great 𝑛, like 𝑛 ∼ 10

123; see [38]. That is, the minimal
length is always around the Planck length and the critical
momentum is always around the Planck momentum for any
𝑛, which gives a good property for our improved exponential
GUP.

At the end of this subsection we solve (7) and give the
momentum measurement precision in terms of the position
measurement precision for our use in Section 3:

Δ𝑃 =
ℏ

2Δ𝑋
exp{− 1

2𝑛
𝑊(−2𝑛 (

𝛼ℓPl
2Δ𝑋

)

2𝑛

)} . (10)

2.2. Functional Analysis of the Position Operator. The eigen-
value equation for the position operator in the momentum
space in the framework of GUP

𝑛
is given by

𝑖ℏ exp(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝜕
𝑝
𝜓
𝜆
(𝑝) = 𝜆𝜓

𝜆
(𝑝) , (11)

and the wavefunctions, that is, the position eigenfunctions,
can be obtained by solving the above equation:

𝜓
𝜆
(𝑝) =

{{{{{{{

{{{{{{{

{

√
𝛼ℓPl

2ℏΓ ((2𝑛 + 1) /2𝑛)
exp{+𝑖𝜆 [

1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) +

𝑝

2𝑛ℏ
𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]} , if 𝑝 < 0,

√
𝛼ℓPl

2ℏΓ ((2𝑛 + 1) /2𝑛)
exp{−𝑖𝜆 [

1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) −

𝑝

2𝑛ℏ
𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]} , if 𝑝 ≥ 0,

(12)
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where Γ(𝑥) is the gamma function defined as Γ(𝑥) ≡

∫
∞

0
𝑡
𝑥−1

𝑒
−𝑡
𝑑𝑡 and 𝐸

𝑛
(𝑥) is the generalized exponential inte-

gral function defined as 𝐸
𝑛
(𝑥) ≡ ∫

∞

1
𝑡
−𝑛
𝑒
−𝑥𝑡

𝑑𝑡. Note that this
piecewise-defined function is continuous at the point 𝑝 = 0.

The scalar product of wavefunctions can be calculated:

⟨𝜓
𝜆
 | 𝜓
𝜆
⟩

= ∫

+∞

−∞

𝑑𝑝 exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝜓
∗

𝜆
 (𝑝) 𝜓𝜆 (𝑝)

=
1

[(Γ ((2𝑛 + 1) /2𝑛) /𝛼ℓPl) (𝜆 − 𝜆)]

⋅ sin [
Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
(𝜆 − 𝜆


)] .

(13)

Note that, according to KMM’s result [10], because of the
existence of theminimal length there are no exact eigenvalues
for the position operator and the formal eigenfunctions
𝜓
𝜆
(𝑝) attained by solving the eigenvalue equation are in fact

unphysical. For this reasonwe have to recover information on
position by using themaximally localized states which will be
analyzed in the following.

2.3. Maximally Localized States. In order to recover informa-
tion on position themaximally localized states are introduced
and used to calculate the average values of the position
operator instead of the ordinary position eigenvalues. In
[10] the maximally localized states are constructed from the
squeezed states satisfying

(Δ𝑋) (Δ𝑃) =
1

2


⟨[𝑋, �̂�]⟩


. (14)

However, it is pointed out [16] that only for a very special
GUP, like the quadratic form GUP

0
, can the maximally

localized states be obtained in terms of squeezed states. In
general, a constrained variational principle should be applied
in order to find out maximally localized states. The states
are solutions of the following Euler-Lagrange equation in the
momentum space [16]:

{− [𝑓 (𝑝) 𝜕
𝑝
]
2

− 𝜉
2
+ 2𝑎 [𝑖𝑓 (𝑝) 𝜕

𝑝
− 𝜉]

+ 2𝑏 [V (𝑝) − 𝛾] − 𝜇
2
}Ψ (𝑝) = 0,

(15)

where 𝑎 and 𝑏 are Lagrange multipliers, the function 𝑓(𝑝)

depends on the commutator [𝑋, �̂�] = 𝑖𝑓(�̂�), and the other
parameters emerge from the following relations:

(Δ𝑋)
2

min = min ⟨Ψ|𝑋
2
− 𝜉
2
|Ψ⟩

⟨Ψ | Ψ⟩
≡ 𝜇
2
,

𝜉 ≡
⟨Ψ|𝑋 |Ψ⟩

⟨Ψ | Ψ⟩
,

𝛾 ≡

⟨Ψ| V (�̂�) |Ψ⟩

⟨Ψ | Ψ⟩
.

(16)

Note that V(�̂�) is such an operator that its representing
function in the momentum space V(𝑝) diverges and is not
integrable but cannot diverge faster than |𝑝|

3] with ] >

0 when |𝑝| goes to infinity. However, it is not necessary
to determine the concrete form of V(𝑝) as the maximally
localized states appear under the condition 𝑏 = 0. For the
details of relevant analysis, see [16].

Furthermore, according to the proposal in [16], when
|𝑝| → ∞, if 𝑧(𝑝) defined as

𝑧 (𝑝) ≡ ∫

𝑝

0

𝑑𝑝


𝑓 (𝑝)
(17)

has finite limits,

𝑧 (+∞) ≡ 𝛼
+
> 0,

𝑧 (−∞) ≡ 𝛼
−
< 0,

(18)

one can solve the Euler-Lagrange equation (15) for 𝑏 = 0 and
give the maximally localized states as follows:

Ψ
𝜉
(𝑝) ≡ ⟨𝑝 | Ψ

𝜉
⟩

= 𝐶 exp [−𝑖𝜉𝑧 (𝑝)] sin {𝜇 [𝑧 (𝑝) − 𝛼
−
]} ,

(19)

where

|𝐶| = √
2

ℏ (𝛼
+
− 𝛼
−
)
,

𝜇 =
𝑘𝜋

𝛼
+
− 𝛼
−

, 𝑘 ∈ N.

(20)

Correspondingly, the minimal spread in position for 𝑘 = 1

equals

(Δ𝑋)min
𝑏=0 =

𝜋

𝛼
+
− 𝛼
−

. (21)

Now we turn to our case in which for the improved
exponential GUP, 𝑓(𝑝) has the form

𝑓 (𝑝) = ℏ exp(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
) . (22)
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We thus calculate

𝑧 (𝑝) ≡ ∫

𝑝

0

𝑑𝑝


𝑓 (𝑝)
=

{{{{{

{{{{{

{

−
1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) −

𝑝

2𝑛ℏ
𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
) , if 𝑝 < 0,

+
1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) −

𝑝

2𝑛ℏ
𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
) , if 𝑝 ≥ 0,

(23)

and the finite parameters 𝛼
+
and 𝛼

−
, respectively:

𝛼
+
=

1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) ,

𝛼
−
= −

1

𝛼ℓPl
Γ (

2𝑛 + 1

2𝑛
) .

(24)

As a result, we deduce the maximally localized states in
the momentum space which can be written as a piecewise-
defined function. For 𝑝 < 0, it can be expressed as

Ψ
𝜉
(𝑝) = −√

𝛼ℓPl
ℏΓ ((2𝑛 + 1) /2𝑛)

⋅ exp[𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ

⋅ 𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

⋅ sin[
𝜋𝛼ℓPl

4𝑛ℏΓ ((2𝑛 + 1) /2𝑛)

⋅ 𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

(25)

and for 𝑝 ≥ 0 as

Ψ
𝜉
(𝑝) = √

𝛼ℓPl
ℏΓ ((2𝑛 + 1) /2𝑛)

⋅ exp[−𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ

⋅ 𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

⋅ sin[
𝜋𝛼ℓPl

4𝑛ℏΓ ((2𝑛 + 1) /2𝑛)

⋅ 𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)] .

(26)

The minimal length that corresponds to the maximally
localized states then reads as

(Δ𝑋)min
𝑏=0 =

𝜋𝛼ℓPl
2Γ ((2𝑛 + 1) /2𝑛)

. (27)

In the remaining contexts of this subsection, we give some
interesting properties of the maximally localized states.

First of all, we point out that any twomaximally localized
states with different positions 𝜉’s (see (16)) are no longer
mutually orthogonal because of the fuzziness of position
space:

⟨Ψ
𝜉
 | Ψ
𝜉
⟩ =

𝜋
2
𝛼
3
ℓ
3

Pl
Γ ((2𝑛 + 1) /2𝑛)

⋅

sin [(Γ ((2𝑛 + 1) /2𝑛) /𝛼ℓPl) (𝜉 − 𝜉

)]

𝜋2𝛼2ℓ
2

Pl (𝜉 − 𝜉) − [Γ ((2𝑛 + 1) /2𝑛)]
2
(𝜉 − 𝜉)

3
.

(28)

Next, we project an arbitrary state |𝜓⟩ onto onemaximally
localized state and calculate the probability amplitude for the
particle being maximally localized around the position 𝜉. To
this end, we write the transformation of a wavefunction from
the momentum space to the quasiposition space:

𝜓 (𝜉) ≡ ⟨Ψ
𝜉
| 𝜓⟩ = {−√

𝛼ℓPl
ℏΓ ((2𝑛 + 1) /2𝑛)

exp [−𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
]∫

0

−∞

+√
𝛼ℓPl

ℏΓ ((2𝑛 + 1) /2𝑛)
exp [+𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
]

⋅ ∫

+∞

0

}𝑑𝑝{exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
) exp[− 𝑖𝜉

2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)] sin[

𝜋𝛼ℓPl
4𝑛ℏΓ ((2𝑛 + 1) /2𝑛)

𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]𝜓 (𝑝)} .

(29)

For instance, the quasiposition wavefunction (it can
be obtained by simply substituting the momentum

eigenfunction 𝜓
𝑝
(𝑝) = 𝛿(𝑝 − 𝑝) into (29)) of the

momentum eigenfunction 𝜓
𝑝
(𝑝) with the eigenvalue
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𝑝 is always a plane wave but has a specific wave-
length,

𝜆
𝜉
=

2𝜋

(1/𝛼ℓPl) Γ ((2𝑛 + 1) /2𝑛) − (
𝑝
 /2𝑛ℏ) 𝐸(2𝑛−1)/2𝑛 ((𝛼

2𝑛ℓ
2𝑛

Pl /ℏ
2𝑛) 𝑝2𝑛)

>
2𝜋𝛼ℓPl

Γ ((2𝑛 + 1) /2𝑛)
, (30)

which reveals that the physical states with wavelengths
shorter than 2𝜋𝛼ℓPl/Γ((2𝑛 + 1)/2𝑛) are naturally discarded
in the process of the generalized Fourier decomposition of
the quasiposition wavefunction of physical states. However,
we mention that in the ordinary quantum mechanics the
position wavefunction describes a physical state and thus
no physical states with short wavelengths are discarded in
the Fourier decomposition. By using (29), we can calculate
the probability amplitude for the particle being maximally
localized around the position 𝜉, which can be read out from
the scalar product of quasiposition wavefunctions discussed
in the following.

At last, we give the scalar product of quasiposition
wavefunctions by first deriving the inverse transformation of
(29),

𝜓 (𝑝) =
1

2𝜋
√
Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPlℏ
csc[ 𝜋𝛼ℓPl

4𝑛ℏΓ ((2𝑛 + 1) /2𝑛)

⋅ 𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]{−∫

0

−∞

𝑑𝜉

⋅ exp[𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

⋅ 𝜓 (𝜉) + ∫

+∞

0

𝑑𝜉

⋅ exp[−𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

⋅ 𝜓 (𝜉)} ,

(31)

and then computing the following integration:

⟨𝜙 | 𝜓⟩ = ∫

+∞

−∞

𝑑𝑝 exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)𝜙
∗
(𝑝) 𝜓 (𝑝) =

Γ ((2𝑛 + 1) /2𝑛)

4𝜋2𝛼ℓPlℏ
∫

+∞

−∞

𝑑𝑝{exp(−
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)

⋅ csc2 [ 𝜋𝛼ℓPl
4𝑛ℏΓ ((2𝑛 + 1) /2𝑛)

𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]

⋅ [−∫

0

−∞

𝑑𝜉
 exp[−𝑖𝜉


Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
−

𝑖𝜉


2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]𝜙
∗
(𝜉

)

+ ∫

+∞

0

𝑑𝜉
 exp[𝑖𝜉


Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
−

𝑖𝜉


2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]𝜙
∗
(𝜉

)]

⋅ [−∫

0

−∞

𝑑𝜉 exp[𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]𝜓 (𝜉)

+ ∫

+∞

0

𝑑𝜉 exp[−𝑖𝜉Γ ((2𝑛 + 1) /2𝑛)

𝛼ℓPl
+

𝑖𝜉

2𝑛ℏ
𝑝𝐸
(2𝑛−1)/2𝑛

(
𝛼
2𝑛
ℓ
2𝑛

Pl
ℏ2𝑛

𝑝
2𝑛
)]𝜓 (𝜉)]} .

(32)

3. Black Hole Thermodynamics

In this section we calculate the quantum corrections to the
Hawking temperature, the entropy, and the heat capacity of
the Schwarzschild black hole in the framework of our GUP
and compare our results with that obtained previously in the
frameworks of theHawking proposal, the quadraticGUP, and
the exponential GUP.

In the following contexts of the present paper we adopt
the units ℏ = 𝑐 = 𝑘

𝐵
= 1. As a result, the Planck length, the

Planck mass, the Planck temperature, and the gravitational
constant satisfy the relations: ℓPl = 𝑀

−1

Pl = 𝑇
−1

Pl = √𝐺.

3.1. Temperature. Themetric of a four-dimensional Schwarz-
schild black hole can be written as

𝑑𝑠
2
= −(1 −

2𝑀𝐺

𝑟
)𝑑𝑡
2
+ (1 −

2𝑀𝐺

𝑟
)

−1

𝑑𝑟
2

+ 𝑟
2
𝑑Ω
2
,

(33)
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where 𝑀 is the black hole mass. The Schwarzschild horizon
radius is defined as 𝑟

ℎ
≡ 2𝑀𝐺. According to the near-

horizon geometry, the position measurement precision is
of the order of the horizon radius (we assume Δ𝑋 ≃ 𝑟

ℎ

as done in other works; see, for instance, [37]. This is a
physical estimation and we think it is reasonable. For a static
observer outside the horizon, one cannot fix the position of a
particle around a black hole because of the horizon, so the
coordinate-uncertainty of the particle can be estimated to
be the radius of the horizon. This estimation (also including
others) is from physical intuition and does not depend on
the explicit form of a generalized uncertainty principle. Its
validity can be confirmed from its successful inducing of the
standard Hawking temperature of the Schwarzschild black
hole), Δ𝑋 ≃ 𝑟

ℎ
. Therefore, we can deduce that the minimal

length corresponds to theminimalmass of the Schwarzschild
black hole in such a way (Δ𝑋)

0
≈ 2𝑀

0
𝐺, which gives

the minimal mass, sometimes called the black hole remnant
(BHR), as follows:

𝑀
0
≈

𝛼𝑀Pl
4

(2𝑛𝑒)
1/2𝑛

. (34)

Note that as 𝛼 is in the order of unity the black hole remnant
is of the order of the Planck mass for any 𝑛.

Following the method [25, 43–49] which connects
directly the uncertainty relation with the black hole mass-
temperature relation and using (10), we obtain the corrected
temperature which is expressed in terms of the ratio of the
minimal mass and the mass of the black hole:

𝑇 ≈
Δ𝑃

2𝜋
=

1

8𝜋𝑀𝐺
exp{− 1

2𝑛
𝑊(−

1

𝑒
(
𝑀
0

𝑀
)

2𝑛

)} . (35)

In order to compare the above result with others, we expand
it in (1/𝑒)(𝑀

0
/𝑀)
2𝑛:

𝑇 =
1

8𝜋𝑀𝐺
[1 +

1

2𝑛𝑒
(
𝑀
0

𝑀
)

2𝑛

+
4𝑛 + 1

8𝑛2𝑒2
(
𝑀
0

𝑀
)

4𝑛

+
(6𝑛 + 1)

2

48𝑛3𝑒3
(
𝑀
0

𝑀
)

6𝑛

+ ⋅ ⋅ ⋅] .

(36)

It is obvious that the first term of the above result coincides
with Hawking’s result and the case 𝑛 = 1 covers the
result given in the framework of the exponential GUP [37].
Moreover, we provide the new temperature-mass relation for
𝑛 ≥ 2 in the framework of our improved exponential GUP
[38]. We note that when 𝑛 increases, the new temperature-
mass relation is close to the Hawking result in the process
before the end of evaporation, but quite different from
Hawking’s at the end of evaporation in the aspects that the
new relation leads to a finite maximal temperature and a
nonvanishing minimal mass.

Using the numerical method, we plot the curves of the
Hawking temperature versus the black hole mass in Figures
1 and 2 in which the curves from the Hawking proposal,
the quadratic GUP (noted by GUP

0
), and the exponential

GUP (noted by GUP
1
) are shown together for comparisons.

Note that we use the Planck units (here we list some Planck
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Figure 1: The temperature versus the black hole mass for the case
𝑛 = 2. From left to right: the Hawking result (black solid curve),
GUP
2
result (solid curve), GUP

0
result (dashed curve), and GUP

1

result (dotted curve) for 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25

(blue), respectively.
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Figure 2: The temperature versus the black hole mass for the case
𝛼 = 1. Curves are the Hawking result (black) and GUP

𝑛
results for

𝑛 = 2 (red), 𝑛 = 5 (green), and 𝑛 = 10 (blue), respectively.

units related to this work and their values in the SI units:
ℓPl = 1.61620 × 10

−35m, 𝑀Pl = 2.17651 × 10
−8 kg, 𝑇Pl =

1.41683 × 10
32 K, and 𝑡Pl = 5.39106 × 10

−44 s, the Planck unit
of entropy: 𝑆Pl = 1.38065 × 10

−23 J/K, the Planck unit of heat
capacity: 𝐶Pl = 1.38065 × 10

−23 J/K, and the Planck unit of
power of radiation: 𝑃Pl = 3.62831 × 10

53 J/s) in all figures and
tables of the present paper.

Figure 1 shows that the maximal temperature decreases
but the remnant mass increases when the parameter 𝛼 grows.

Figure 2 shows that the maximal temperature increases
but the remnant mass decreases when the index 𝑛 grows.
Moreover, the temperature-mass curve ofGUP

𝑛
is close to the

Hawking curve when 𝑛 grows, but the significant difference
between the two cases is that the former is bounded by
a finite maximal temperature and a nonvanishing minimal
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mass (BHR) at the final stage of evaporation due to the GUP
quantum effects.

In addition, we can obtain the black hole mass as a
function of the Hawking temperature through solving (35):

𝑀 =
1

8𝜋𝑇𝐺
exp{ 1

2𝑛
(

𝑇

𝑇Max
)

2𝑛

} , (37)

where 𝑇Max = (1/2𝑛)
1/(2𝑛)

(𝑇Pl/2𝜋𝛼) is the maximal tem-
perature; the black hole can reach once the black hole mass
reduces to theminimal value𝑀

0
.That is,𝑇Max, approximately

in the order of ten percent of the Planck temperature for any
𝑛, is the temperature of the black hole remnant. We note that
it is a common property that 𝑀

0
is nonvanishing and 𝑇Max

does not go to infinity in the framework of any GUP, which is
different from the Hawking proposal. Incidentally, our result
(37) reduces to that of [37] when 𝑛 = 1.

3.2. Entropy. Now we calculate the microcanonical entropy
of the Schwarzschild black hole. It is known [25, 43–49]
that the minimal increase of the area of a black hole when
absorbing a classical particle is (Δ𝐴)

0
≈ 8ℓ
2

Pl(ln 2)(Δ𝑋)(Δ𝑃).
Using the saturate uncertainty relation (see (7) or (10)) and
considering that the minimal horizon area and the horizon
area can be expressed by 𝐴

0
= 4𝜋(Δ𝑋)

2

0
and 𝐴 = 4𝜋(Δ𝑋)

2,
respectively, we give the minimal increase of the black hole
area:

(Δ𝐴)0 ≈ 4ℓ
2

Pl (ln 2) exp{− 1

2𝑛
𝑊(−

1

𝑒
(
𝐴
0

𝐴
)

𝑛

)} . (38)

Since the minimal increase of the entropy of a black hole
is (Δ𝑆)

0
= ln 2, we approximately establish the following

differential equation as usual:

𝑑𝑆

𝑑𝐴
≈

(Δ𝑆)0

(Δ𝐴)
0

=
1

4ℓ
2

Pl
exp{ 1

2𝑛
𝑊(−

1

𝑒
(
𝐴
0

𝐴
)

𝑛

)} . (39)

As a result, considering the minimal horizon area 𝐴
0
as

the lower limit of the horizon area integration, we give the
entropy of the black hole as follows:

𝑆 =
1

4ℓ
2

Pl
∫

𝐴

𝐴
0

exp{ 1

2𝑛
𝑊(−

1

𝑒
(
𝐴
0

𝐴
)

𝑛

)}𝑑𝐴. (40)

It is evident that our result reduces to that of the exponential
GUP when 𝑛 = 1. For 𝑛 ≥ 2, we will give a new entropy-area
or entropy-mass relation by following a particular treatment
in area integration.

Setting 𝑦 ≡ −(1/𝑒)(𝐴
0
/𝐴)
𝑛 and using the property of the

Lambert 𝑊 function, exp(𝑊(𝑢)/2𝑛) = (𝑢/𝑊(𝑢))
1/(2𝑛), we

perform the above integration and obtain the entropy as a
function of the black hole area,

𝑆 =
𝐴
0

4𝑛ℓ
2

Pl𝑒
1/𝑛

∫

−(1/𝑒)(𝐴
0
/𝐴)
𝑛

−1/𝑒

(−𝑦)
−1−1/2𝑛

⋅ (−𝑊 (𝑦))
−1/2𝑛

𝑑𝑦

=
(−1)
−1/𝑛

𝐴
0

4𝑛ℓ
2

Pl (2𝑛𝑒)
1/𝑛

{2𝑛Γ(
𝑛 − 1

𝑛
,
1

2𝑛

⋅ 𝑊(−
1

𝑒
(
𝐴
0

𝐴
)

𝑛

)) − 2𝑛Γ (
𝑛 − 1

𝑛
, −

1

2𝑛
)

+ Γ(−
1

𝑛
,
1

2𝑛
𝑊(−

1

𝑒
(
𝐴
0

𝐴
)

𝑛

)) − Γ(−
1

𝑛
, −

1

2𝑛
)} ,

(41)

or the entropy as a function of the black hole mass,

𝑆 =
(−1)
−1/𝑛

𝜋𝛼
2

4𝑛
{2𝑛Γ(

𝑛 − 1

𝑛
,
1

2𝑛

⋅ 𝑊(−
1

𝑒
(
𝑀
0

𝑀
)

2𝑛

)) − 2𝑛Γ (
𝑛 − 1

𝑛
, −

1

2𝑛
)

+ Γ(−
1

𝑛
,
1

2𝑛
𝑊(−

1

𝑒
(
𝑀
0

𝑀
)

2𝑛

)) − Γ(−
1

𝑛
,

−
1

2𝑛
)} ,

(42)

where the Cauchy principal value of the above integral has
been chosen and the definition of the upper incomplete
gamma function is Γ(𝑠, 𝑥) ≡ ∫

∞

𝑥
𝑡
𝑠−1

𝑒
−𝑡
𝑑𝑡. Note that the

entropy remains real even if the index 𝑛 is even.
As done in the above subsection, by using the numerical

method, we plot the curves of the entropy versus the black
hole mass in Figures 3 and 4 in which the curves from the
Hawking proposal, the quadratic GUP (noted by GUP

0
), and

the exponential GUP (noted byGUP
1
) are shown together for

comparisons.
Figure 3 indicates that when 𝛼 is growing, the entropy of

the black hole with a fixed mass is declining and the zero-
entropy remnant has an increasing mass at the final stage of
evaporation.

Figure 4 indicates that when 𝑛 is growing, the entropy of
the black hole with a fixed mass is increasing and the zero-
entropy remnant has a declining mass at the final stage of
evaporation. Moreover, the entropy-mass curve of GUP

𝑛
is

close to the Hawking curve for a large 𝑛, but the former will
not overlap the latter because the minimal mass (BHR)𝑀

0
is

nonvanishing.
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Figure 3: The entropy versus the black hole mass for the case 𝑛 =

2. From left to right: the Hawking result (black solid curve), GUP
2

result (solid curve), GUP
0
result (dashed curve), and GUP

1
result

(dotted curve) for 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25

(blue), respectively.
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Figure 4:The entropy versus the black hole mass for the case 𝛼 = 1.
Curves are the Hawking result (black) and GUP

𝑛
results for 𝑛 = 2

(red), 𝑛 = 5 (green), and 𝑛 = 10 (blue), respectively. Moreover, the
GUP
1
result (purple) is shown for comparison.

In addition, it may be of some interest to analyze how
our entropy-area relation modifies the standard Bekenstein-
Hawking entropy formula. To this end, we expand (41) for the
cases 𝑛 ≥ 2 in (1/𝑒)(𝐴

0
/𝐴)
𝑛 up to the third order:

𝑆 ≈
𝐴

4ℓ
2

Pl
−

𝐴
0

4ℓ
2

Pl
{1 +

1

2𝑛 (𝑛 − 1) 𝑒
[1 − (

𝐴
0

𝐴
)

𝑛−1

]

+
4𝑛 − 1

8𝑛2 (2𝑛 − 1) 𝑒2
[1 − (

𝐴
0

𝐴
)

2𝑛−1

]

+
(6𝑛 − 1)

2

48𝑛3 (3𝑛 − 1) 𝑒3
[1 − (

𝐴
0

𝐴
)

3𝑛−1

]} .

(43)

We see that the leading order coincides with the Bekenstein-
Hawking entropy formula, but the subleading order is a
power-law correction −(𝐴

0
/4ℓ
2

Pl){1 + (1/2𝑛(𝑛 − 1)𝑒)[1 −

(𝐴
0
/𝐴)
𝑛−1

]} instead of the well-known logarithmic correc-
tion, where 𝐴

0
is the minimal horizon area related to the

black hole remnant that is vanishing in the framework of
the Hawking proposal but nonvanishing in the framework
of any GUP. We also point out a common property that our
correction and the logarithmic correction possess; that is,
both are negative. Qualitatively, we can see from Figure 4
that the absolute value of our correction for any case of
𝑛 ≥ 2 is smaller than that of the logarithmic correction
that corresponds to the case 𝑛 = 1. Further, the larger
𝑛 is, the smaller the absolute value of our correction goes
to. Quantitatively, we can estimate the difference of the two
distinct corrections. The absolute value of the correction in
the framework of GUP

1
is |Δ𝑆

1
(𝑀)| ≈ (𝜋𝛼

2
/2) ln(𝑀/𝑀

0
) −

(3𝜋𝛼
2
/16𝑒)(𝑀

0
/𝑀)
2
+ (𝜋𝛼

2
/4)[−𝛾 + 1 + 2√𝑒 + Ei(1/2) +

ln(2𝑒)], and in the framework of GUP
𝑛
it is |Δ𝑆

𝑛
(𝑀)| ≈

(𝜋𝛼
2
/4)(2𝑛𝑒)

1/𝑛
{1 + (1/2𝑛(𝑛 − 1)𝑒)[1 − (𝑀

0
/𝑀)
2𝑛−2

]}, where
Ei(𝑥) is the exponential integral function defined as Ei(𝑥) ≡

− ∫
∞

−𝑥
𝑡
−1
𝑒
−𝑡
𝑑𝑡 and 𝛾 is the Euler constant. We compute the

ratio of the two corrections for three samples: (i) for 𝑀 =

2𝑀Pl and 𝑛 = 2, |Δ𝑆
2
(2)/Δ𝑆

1
(2)| ≈ 4.4 × 10

−1; (ii) for
𝑀 = 10𝑀Pl and 𝑛 = 2, |Δ𝑆

2
(10)/Δ𝑆

1
(10)| ≈ 3.2 × 10

−1; (iii)
for𝑀 = 10𝑀Pl and 𝑛 = 100, |Δ𝑆

100
(10)/Δ𝑆

1
(10)| ≈ 9.2×10

−2.
It is evident that the quantitative results coincide with the
qualitative analysis. That is to say, in general, the correction
of GUP

𝑛
(𝑛 ≥ 2) is smaller than that of GUP

1
(logarithm) for

the black holes with various masses and 𝑛’s; to be specific, the
greater the mass is, for a fixed 𝑛, the smaller the ratio is, and
moreover, the greater 𝑛 is, for a fixed mass, the smaller the
ratio becomes, which means that the deviation of the GUP

𝑛

correction from the logarithmic correction goes to be greater.

3.3. Heat Capacity. By using (37), we get the heat capacity of
the black hole:

𝐶 =
𝑑𝑀

𝑑𝑇
= −8𝜋𝑀

2
ℓ
2

Pl [1 +𝑊(−
1

𝑒
(
𝑀
0

𝑀
)

2𝑛

)]

⋅ exp[ 1

2𝑛
𝑊(−

1

𝑒
(
𝑀
0

𝑀
)

2𝑛

)] = −8𝜋𝑀
2
ℓ
2

Pl [1

− (1 +
1

2𝑛
)
1

𝑒
(
𝑀
0

𝑀
)

2𝑛

+ (
1

8𝑛2
− 1)

1

𝑒2
(
𝑀
0

𝑀
)

4𝑛

+
−1 + 6𝑛 + 12𝑛

2
− 72𝑛

3

48𝑛3

1

𝑒3
(
𝑀
0

𝑀
)

6𝑛

+ ⋅ ⋅ ⋅] ,

(44)

which shows that the heat capacity vanishes at the end point
of evaporation when 𝑀 = 𝑀

0
, that is, when 𝑀 equals the

mass of black hole remnant. We describe the variation of the
heat capacity with the black hole mass in Figures 5 and 6.

Figure 5 indicates that when 𝛼 is growing, the heat
capacity of the black hole with a fixed mass is increasing
(but its absolute value is declining) and the remnant with
vanishing heat capacity also has an increasingmass at the end
point of evaporation.

Figure 6 indicates that when 𝑛 is growing, the heat
capacity of the black holewith a fixedmass is declining (but its
absolute value is increasing) and the remnant with vanishing
heat capacity also has a declining mass at the end point of
evaporation.
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Figure 5: The heat capacity versus the black hole mass for the case
𝑛 = 2. From left to right: the Hawking result (black solid curve),
GUP
2
result (solid curve), GUP

0
result (dashed curve), and GUP

1

result (dotted curve) for 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25

(blue), respectively.
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Figure 6: The heat capacity versus the black hole mass for the case
𝛼 = 1. Curves are the Hawking result (black) and GUP

𝑛
results for

𝑛 = 2 (red), 𝑛 = 5 (green), and 𝑛 = 10 (blue), respectively.

4. Black Hole Evaporation

In this section we focus on the evaporation of the
Schwarzchild black hole in a variety of GUP frameworks.
Supposing that black holes only emit photons, we give the
evaporation rate and the decay time without and with the
consideration of the UV/IR mixing effect, respectively. We
will see that the UV/IR mixing effect plays a significant role
in the novel understanding of the Hawking radiation from
the point of view of GUPs. That is, this effect can largely
slow down the rate of evaporation. As the results cannot be
expressed analytically, we thus list them numerically in the
following investigations.

4.1. Black Hole Evaporation without the Consideration of
the UV/IR Mixing Effect. In this subsection we follow the
usual way (see, for instance, [37]), where the UV/IR mixing

effect is not considered, to investigate the black hole evap-
oration. We know that the weighted phase space volume
𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛

𝑑
3X𝑑3P, where𝑃 = √P ⋅ P, is invariant under time

evolution, which is known as the analog of the Liouville theo-
rem in the classical limit [38]. Therefore, the density of states
in themomentum space has the form (1/(2𝜋)

3
)𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛

𝑑
3P

and the average energy per volume at temperature 𝑇 reads as

E
𝛾
(𝑇) =

2

(2𝜋)
3
∫ 𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛 𝑃𝑑

3P
𝑒𝑃/𝑇 − 1

. (45)

According to the Stefan-Boltzmann law, we give the evapora-
tion rate (consider photons radiating out from a black hole
via an infinitesimal surface 𝑑𝐴 whose solid angle is 𝑑Ω. The
evaporation energy per unit time is equal to (E

𝛾
(𝑇)/

4𝜋) cos 𝜃𝑑Ω𝑑𝐴. So the total evaporation rate can be calcu-
lated by integrating the solid angle over the half-sphere
and a factor 1/4 emerges; i.e., 𝑑𝑀/𝑑𝐴𝑑𝑡 = −(E

𝛾
(𝑇)/

4𝜋) ∫ cos 𝜃 𝑑Ω = −(E
𝛾
(𝑇)/4𝜋) ∫

𝜋/2

0
cos 𝜃 sin 𝜃 𝑑𝜃 ∫

2𝜋

0
𝑑𝜑 =

−(1/4)E
𝛾
(𝑇). The factor 1/4 was lost in [37]) as follows:

𝑑𝑀

𝑑𝑡
= −

𝐴

4
E
𝛾 (𝑇) , (46)

where 𝐴 is the horizon area. Substituting (45) into (46) and
making the momentum integration from zero as the lower
limit, we obtain

𝑑𝑀

𝑑𝑡
= −

4𝐺
2
𝑀
2

𝜋
∫

∞

0

𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛 𝑃
3
𝑑𝑃

𝑒𝑃/𝑇 − 1
. (47)

Further considering the temperature as the function of the
mass (35), we then draw the pictures to show the relations
between the evaporation rate and the black hole mass in
Figures 7 and 8. Note that the UV/IR mixing effect is not
embedded in (47) because that zero is taken as the lower
limit implies that the sub-Planckian modes are not excluded
[38, 42, 50] in the contribution to the energy density.

Figure 7 shows that for a black hole with a fixed mass the
absolute value of the evaporation rate in the framework of
any of the three GUPs is greater than that of the Hawking
proposal, which means that the radiation process speeds up
in the former case. Further, the larger 𝛼 is, the stronger the
speedup of evaporation becomes. Moreover, the parameter 𝛼
and the remnant mass have a positive correlation.

Figure 8 shows that for a black hole with a fixed mass the
absolute value of the evaporation rate in the framework of
GUP
𝑛
with small 𝑛, like 𝑛 = 2, 5, is greater than that of the

Hawking proposal, which means that the radiation process
speeds up in the former case. When 𝑛 becomes larger, like
𝑛 = 10, the curve of GUP

10
has two points of intersection

with that of the Hawking proposal, which implies that the
radiation slows down in the framework of GUP

10
when the

black hole mass takes the values of interval corresponding to
the two points. Moreover, the index 𝑛 and the remnant mass
have a negative correlation.
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Table 1: Hawking time and GUP
0
- and GUP

1
-corrected decay times with the black hole mass𝑀 = 1, 2, . . . , 5 (in Planck units) and 𝛼 = 1.

Hawking time and GUP
0
- and GUP

1
-corrected decay times without the UV/IR mixing effect

Frame 𝑀

1 2 3 4 5

Hawking 16085 128680 434294 1.02944 × 10
6

2.01062 × 10
6

GUP
0

9838.03 114511 412314 999674 1.97308 × 10
6

GUP
1

9070.31 113601 411361 998701 1.97210 × 10
6

Table 2: GUP
𝑛
-corrected decay time with 𝑛 = 2, 3, . . . , 10, the black hole mass𝑀 = 1, 2, . . . , 5 (in Planck units), and 𝛼 = 1.

GUP
𝑛
-corrected decay time without the UV/IR mixing effect

𝑛
𝑀

1 2 3 4 5

2 13868.8 126225 431761 1.02687 × 10
6

2.00802 × 10
6

3 14911.3 127502 433115 1.02826 × 10
6

2.00944 × 10
6

4 15248.1 127843 433457 1.0286 × 10
6

2.00978 × 10
6

5 15405 128000 433614 1.02876 × 10
6

2.00994 × 10
6

6 15495.8 128091 433705 1.02885 × 10
6

2.01003 × 10
6

7 15555.3 128150 433764 1.02891 × 10
6

2.01009 × 10
6

8 15597.5 128192 433806 1.02895 × 10
6

2.01013 × 10
6

9 15629.1 128224 433838 1.02898 × 10
6

2.01016 × 10
6

10 15653.7 128248 433863 1.02901 × 10
6

2.01019 × 10
6
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Figure 7: The evaporation rate versus the black hole mass for the
case 𝑛 = 2. From left to right: the Hawking result (black solid curve),
GUP
2
result (solid curve), GUP

0
result (dashed curve), and GUP

1

result (dotted curve) for 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25

(blue), respectively.

The decay time of the evaporation process can be calcu-
lated by integrating (47) with respect to the black hole mass
from𝑀 to𝑀

0
:

𝑡 = −
𝜋

4𝐺2
∫

𝑀
0

𝑀

𝑑𝑀

𝑀2 ∫
∞

0
𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛

(𝑃3𝑑𝑃/𝑒𝑃/𝑇 − 1)

. (48)

Note that the evaporation process ends when the black
hole mass reaches the minimal mass 𝑀

0
. Using the relation

between the temperature and themass (see (35)), we compute
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Figure 8: The evaporation rate versus the black hole mass for the
case 𝛼 = 1. Curves are the Hawking result (black), GUP

𝑛
results for

𝑛 = 2 (red), 𝑛 = 5 (green), and 𝑛 = 10 (blue), respectively.

numerically the decay time as the function of the black hole
mass and give the Hawking decay time and the GUP

0
-,

GUP
1
-, and GUP

𝑛
-corrected decay times in Tables 1 and 2.

Table 1 indicates that the decay time (the numerical values
in [37] are incorrect; we correct them in Table 1.The reason is
that the coefficients 1/(2𝜋)3 and 1/4were lost in (36) and (44)
of [37], resp. See our equations (45) and (46)) is longer for a
larger (heavier) black hole in any framework of the Hawking,
GUP
0
, and GUP

1
, which is usually reasonable. Due to the

speedup of evaporation in the framework of GUP
0
or GUP

1
,
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the decay time is shorter than that of the Hawking proposal
for a fixedmass, but the deviation is small. Moreover, because
the speedup of evaporation in the framework of GUP

0
is

weaker than that in the framework ofGUP
1
, the decay time in

the former is longer than that in the latter and the difference
of decay times between the twoGUPs is small for a fixedmass.

Table 2 indicates that the decay time is longer for a larger
(heavier) black hole in the framework of GUP

𝑛
for any of

𝑛 ≥ 2 cases, which is same as the situation appeared in the
Hawking proposal, GUP

0
, and GUP

1
. For a fixed mass, for

instance, 𝑀 = 2𝑀Pl, the decay time and the index 𝑛 have a
positive correlation, but the difference of decay times between
the two cases with distinct indices is small.

4.2. Black Hole Evaporation with the Consideration of the
UV/IR Mixing Effect. In general, the UV/IR mixing means
that a large momentummeasurement precisionΔ𝑃(UV) cor-
responds to a large position measurement precision Δ𝑋(IR).
(Heisenberg uncertainty principle, (Δ𝑋)(Δ𝑃) ≥ ℏ/2, shows
that a large Δ𝑃(UV) corresponds to a small Δ𝑋(UV).)
Specifically, we discover [38] that a GUP provides effectively
an IR cutoff due to the UV/IR mixing. (Note that a natural
UV cutoff is provided by the deformation factor of a GUP.)
The Heisenberg uncertainty relation gives the fact that the
position and momentum spaces are Fourier transforms of
each other. The more to localize a wave packet in position
space (smaller Δ𝑋) corresponds to the more to superimpose
momentum states (larger Δ𝑃). In the usual case, there is no
lower bound toΔ𝑋. As asserted in [42, 50], one can compress
the wave packet as small as possible by simply superimposing
states with ever larger momentum (ever shorter wavelength)
to cancel out the tails of the position space distributions.
The uncertainty relation of GUPs (see, for instance, (5) or
(6)) implies that when one keeps on superimposing states
with momenta larger than (Δ𝑃)Crit, Δ𝑋 stops decreasing
and starts increasing instead. The natural interpretation of
such a phenomenon would be that when the trans-Planckian
modes (the states with momenta larger than (Δ𝑃)Crit) are
superimposed on the sub-Planckian modes (the states with
momenta smaller than (Δ𝑃)Crit), the trans-Planckian modes
would “jam” the sub-Planckian modes and prevent them
from canceling out the tails of the wave packets effectively;
that is, the sub-Planckian modes are suppressed by the trans-
Planckian modes. This brings about a shift of lower limit
of momentum integral from zero to the critical momentum
(Δ𝑃)Crit which is dealt with as an effective IR cutoff.

In this subsection the UV/IR mixing effect is considered
in the calculations of the evaporation rate and the decay time.
The way to introduce this effect, as briefly explained above,
is to exclude the sub-Planckian modes in the contribution
to the energy density. Consequently, the lower limit of the
momentum integration in (45) should not be zero but the
critical momentum (9) that corresponds to the minimal
length. So the evaporation rate of the black hole takes the
form

𝑑𝑀

𝑑𝑡
= −

4𝐺
2
𝑀
2

𝜋
∫

∞

(1/2𝑛)
1/(2𝑛)
(1/𝛼ℓPl)

𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛 𝑃
3
𝑑𝑃

𝑒𝑃/𝑇 − 1
. (49)

×10
−6

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
Mass (MPl)

−20

−15

−10

Ev
ap

or
at

io
n 

ra
te

 (P
Pl
) −5

0

Figure 9: The evaporation rate versus the black hole mass for the
case 𝑛 = 2. From left to right: GUP

2
result (solid curve), GUP

0
result

(dashed curve), and GUP
1
result (dotted curve) for 𝛼 = 0.75 (red),

𝛼 = 1 (green), and 𝛼 = 1.25 (blue), respectively, and the Hawking
result (black solid curve) at the lower right corner.
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Figure 10: The evaporation rate versus the black hole mass for the
case 𝛼 = 1. Curves are the GUP

𝑛
results for 𝑛 = 2 (red), 𝑛 = 5

(green), and 𝑛 = 10 (blue), respectively, and the Hawking result
(black) at the lower right corner.

Again using (35) that describes the Hawking temperature as
a function of the black hole mass, we can plot the relations
between the evaporation rate and the black hole mass in
Figures 9 and 10, where the UV/IR mixing effect gives rise
to a great deviation from the Hawking curve.

Figure 9 means that for a black hole with a fixed mass
the absolute value of the evaporation rate in the framework
of any of the three GUPs is greatly slowed down by the
UV/IR mixing effect, and therefore it is much smaller than
that of the Hawking proposal, which gives a quite different
situation from that where the UV/IRmixing effect is omitted.
Moreover, the parameter 𝛼 and the absolute value of the
evaporation rate have a positive correlation, so do 𝛼 and the
remnant mass.

Figure 10 means that for a black hole with a fixed mass
the absolute value of the evaporation rate in the framework
of GUP

𝑛
with 𝑛 ≥ 2 is greatly slowed down by the UV/IR
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Table 3: Hawking time and GUP
0
- and GUP

1
-corrected decay times with the black hole mass𝑀 = 1, 2, . . . , 5 (in Planck units) and 𝛼 = 1.

Hawking time and GUP
0
- and GUP

1
-corrected decay times with the UV/IR mixing effect

Frame 𝑀

1 2 3 4 5

Hawking 16085 128680 434294 1.02944 × 10
6

2.01062 × 10
6

GUP
0

8.55644 × 10
10

9.44548 × 10
21

6.86861 × 10
32

4.85234 × 10
43

3.45809 × 10
54

GUP
1

1.9191 × 10
8

1.08681 × 10
16

4.63509 × 10
23

1.99868 × 10
31

8.83542 × 10
38

Table 4: GUP
𝑛
-corrected decay time with 𝑛 = 2, 3, . . . , 10, the black hole mass𝑀 = 1, 2, . . . , 5 (in Planck units), and 𝛼 = 1.

GUP
𝑛
-corrected decay time with the UV/IR mixing effect

𝑛
𝑀

1 2 3 4 5

2 3.51206 × 10
8

9.35241 × 10
15

3.22915 × 10
23

1.25875 × 10
31

5.24436 × 10
38

3 5.97713 × 10
8

3.48826 × 10
16

2.85769 × 10
24

2.66066 × 10
32

2.6514 × 10
40

4 9.62743 × 10
8

1.15183 × 10
17

1.96492 × 10
25

3.81531 × 10
33

7.93206 × 10
41

5 1.44373 × 10
9

3.05941 × 10
17

9.33582 × 10
25

3.2474 × 10
34

1.20992 × 10
43

6 2.02961 × 10
9

6.79022 × 10
17

3.3019 × 10
26

1.83312 × 10
35

1.09052 × 10
44

7 2.70789 × 10
9

1.31352 × 10
18

9.34557 × 10
26

7.60396 × 10
35

6.63259 × 10
44

8 3.46654 × 10
9

2.2875 × 10
18

2.2338 × 10
27

2.49888 × 10
36

2.99818 × 10
45

9 4.29459 × 10
9

3.67207 × 10
18

4.68656 × 10
27

6.86424 × 10
36

1.07885 × 10
46

10 5.18231 × 10
9

5.52793 × 10
18

8.87472 × 10
27

1.63812 × 10
37

3.24633 × 10
46

mixing effect, and therefore it is much smaller than that of
the Hawking proposal, which gives a quite different situation
from that where the UV/IR mixing effect is omitted. More-
over, the index 𝑛 and the absolute value of the evaporation rate
have a negative correlation, so do 𝑛 and the remnant mass.

From (49), together with (35), we can easily obtain the
decay time by integrating the black hole mass from𝑀 to𝑀

0
,

𝑡 = −
𝜋

4𝐺2

⋅ ∫

𝑀
0

𝑀

𝑑𝑀

𝑀2 ∫
∞

(1/2𝑛)
1/(2𝑛)
(1/𝛼ℓPl)

𝑒
−3𝛼
2𝑛
ℓ
2𝑛

Pl 𝑃
2𝑛

(𝑃3𝑑𝑃/ (𝑒𝑃/𝑇 − 1))

,

(50)

and give the results numerically in Tables 3 and 4. We can see
that the decay time is largely prolonged in all cases relevant to
GUP, which is definitely caused by the UV/IR mixing effect.

Table 3 indicates that the decay time is longer for a
larger (heavier) black hole in any framework of the Hawking,
GUP
0
, and GUP

1
, which is usually reasonable. Due to a great

slowdown of evaporation caused by the UV/IR mixing effect
in the framework of GUP

0
or GUP

1
, the decay time is much

longer than that of the Hawking proposal for a fixed mass,
and the deviation is huge.Moreover, because the slowdown of
evaporation in the framework of GUP

0
is stronger than that

in the framework of GUP
1
, the decay time in the former is

longer than that in the latter and the difference of decay times
between the two GUPs is big for a fixed mass.

Table 4 indicates that the decay time is longer for a larger
(heavier) black hole in the framework of GUP

𝑛
for any of

𝑛 ≥ 2 cases, which is same as the situation appeared in
the Hawking proposal, GUP

0
, and GUP

1
. For a fixed mass,

for instance, 𝑀 = 2𝑀Pl, the decay time and the index 𝑛

have a positive correlation, and the difference of decay times
between the two cases with distinct indices is big.

5. Conclusion

In this paper we derive the maximally localized states for
our improved exponential GUP, denoted by GUP

𝑛
with

𝑛 ≥ 2, and analyze some interesting properties of the
states, such as the nonorthogonality, the corresponding
quasiposition wavefunctions, and the scalar product of these
wavefunctions. In addition, we investigate thermodynamics
of the Schwardzschild black hole; that is, we actually calculate
in the GUP

𝑛
framework the quantum corrections to some

important thermodynamic quantities associated with the
black hole, such as the Hawking temperature, the entropy, the
heat capacity, the evaporation rate, the decay time, and the
remnant mass. These results are summarized in Figures 1–10
and Tables 1–4.

We note that one can calculate the black hole thermody-
namics for any function 𝑓(�̂�) when (1) is generalized to be
[𝑋, �̂�] = 𝑖ℏ𝑓(�̂�). However, our improved exponential GUP
is chosen nontrivially, which is demonstrated as follows. First
of all, by using this GUP together with the consideration of
the UV/IR mixing effect, we have given an interpretation of
the Cosmological Constant Problem; see our previous work
[38] for the details. Further, we study in the present paper
the black hole thermodynamics under the framework of our
GUP and indeed obtain some new and interesting results. For
example, our GUP modifies the maximally localized states
and the Hawking evaporation of black holes. In particular,
when the UV/IR mixing effect is involved, this GUP may
radically change the fate of the black hole under evaporation.
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Although these results are all theoretical, theymay provide us
some new insights into old problems.

Finally, we summarize that the novelty of the present
paper lies on two aspects for the black hole thermodynamics.
One is that the entropy contains a power-law instead of
logarithmic correction in the GUP

𝑛
framework; see (43).The

other aspect is that the evaporation rate and the decay time are
computed with the consideration of the UV/IR mixing effect
and that the two quantities greatly deviate from that obtained
without introducing such an effect (see Tables 1–4 for the
details), which implies that theUV/IRmixing effect produces
a radical influence rather than a tiny correction to the black
hole radiation. For instance, in the case𝑀 = 5𝑀Pl and 𝑛 = 10

we compare the decay times in Table 2 without the UV/IR
mixing effect and in Table 4 with such an effect and see that
the former is 40 orders of magnitude smaller than the latter.
This means that the UV/IR mixing effect largely prolongs the
radiation process of black holes. In particular, in this case
(𝑀 = 5𝑀Pl and 𝑛 = 10) the decay time in Table 4 with the
UV/IR mixing effect is in the order of 102 seconds, which
gives a quite available value if it is possible to be measured
in future. In addition, the difference between our GUP and
the quadratic or exponential GUP exists in the higher- (than
second-) order terms in the Taylor expansion. From Figures 7
and 9, one can see on the aspect of evaporation rates that the
difference becomes apparent in the regime of small masses.
Alternatively, the difference tends to be more apparent from
the point of view of decay times while comparing the data of
Table 1 with that of Table 2 or the data of Table 3 with that
of Table 4. However, the Hawking radiation as the basis of
our model has not yet been tested in experiment. The reason
is obvious because the required high energy scale cannot be
reached in laboratory and no specific signals of the Hawking
radiation are observed in astronomy.Therefore, at present we
have to leave the test of our results to far future experiments
in laboratory or in astronomical observations becausewemay
infer that the evidences for testing thermodynamics of black
holes might be hidden in primordial relics of the Big Bang.
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