23,713 research outputs found
Optimal time-dependent polarized current pattern for fast domain wall propagation in nanowires: Exact solutions for biaxial and uniaxial anisotropies
One of the important issues in nanomagnetism is to lower the current needed
for a technologically useful domain wall (DW) propagation speed. Based on the
modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski
spin-transfer torque and the field-like torque, we derive the optimal spin
current pattern for fast DW propagation along nanowires. Under such conditions,
the DW velocity in biaxial wires can be enhanced as much as ten times compared
to the velocities achieved in experiments so far. Moreover, the fast variation
of spin polarization can help DW depinning. Possible experimental realizations
are discussed.Comment: 4 pages, 1 figur
Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
Photo-transmutation of long-lived nuclear waste induced by high-charge
relativistic electron beam (e-beam) from laser plasma accelerator is
demonstrated. Collimated relativistic e-beam with a high charge of
approximately 100 nC is produced from high-intensity laser interaction with
near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor
and then radiates energetic bremsstrahlung photons with flux approaching
10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example,
the resulting transmutation reaction yield is the order of 10^{9} per laser
shot, which is two orders of magnitude higher than obtained from previous
studies. It is found that at lower densities, tightly focused laser irradiating
relatively longer NCD plasmas can effectively enhance the transmutation
efficiency. Furthermore, the photo-transmutation is generalized by considering
mixed-nuclide waste samples, which suggests that the laser-accelerated
high-charge e-beam could be an efficient tool to transmute long-lived nuclear
waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm
Research on UBI auto insurance pricing model based on parameter adaptive SAPSO optimal fuzzy controller
Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates
Exact solution of gyration radius of individual's trajectory for a simplified human mobility model
Gyration radius of individual's trajectory plays a key role in quantifying
human mobility patterns. Of particular interests, empirical analyses suggest
that the growth of gyration radius is slow versus time except the very early
stage and may eventually arrive to a steady value. However, up to now, the
underlying mechanism leading to such a possibly steady value has not been well
understood. In this Letter, we propose a simplified human mobility model to
simulate individual's daily travel with three sequential activities: commuting
to workplace, going to do leisure activities and returning home. With the
assumption that individual has constant travel speed and inferior limit of time
at home and work, we prove that the daily moving area of an individual is an
ellipse, and finally get an exact solution of the gyration radius. The
analytical solution well captures the empirical observation reported in [M. C.
Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the
heterogeneous displacement distribution in the population level, individuals in
our model have characteristic displacements, indicating a completely different
mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure
- …