30,059 research outputs found

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio

    Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications

    Get PDF
    The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
    • …
    corecore