19,728 research outputs found

    On the Relation of Hard X-ray Peak Flux and Outburst Waiting Time in the Black Hole Transient GX 339-4

    Full text link
    Aims. In this work we re-investigated the empirical relation between the hard X-ray peak flux and the outburst waiting time found previously in the black hole transient GX 339-4. We tested the relation using the observed hard X-ray peak flux of the 2007 outburst of GX 339-4, clarified issues about faint flares, and estimated the lower limit of hard X-ray peak flux for the next outburst. Methods. We included Swift/BAT data obtained in the past four years. Together with the CGRO/BATSE and RXTE/HEXTE light curves, the observations used in this work cover a period of 18 years. Results. The observation of the 2007 outburst confirms the empirical relation discovered before. This strengthens the apparent link between the mass in the accretion disk and the peak luminosity of the brightest hard state that the black hole transient can reach. We also show that faint flares with peak fluxes smaller than about 0.12 crab do not affect the empirical relation. We predict that the hard X-ray peak flux of the next outburst should be larger than 0.65 crab, which will make it at least the second brightest in the hard X-ray since 1991.Comment: 4 pages, 3 figures, accepted by A&

    Higher moment singularities explored by the net proton non-statistical fluctuations

    Full text link
    We use the non-statistical fluctuation instead of the full one to explore the higher moment singularities of net proton event distributions in the relativistic Au+Au collisions at sNN\sqrt{s_{NN}} from 11.5 to 200 GeV calculated by the parton and hadron cascade model PACIAE. The PACIAE results of mean (MM), variance (σ2\sigma^2), skewness (SS), and kurtosis (κ\kappa) are consistent with the corresponding STAR data. Non-statistical moments are calculated as the difference between the moments derived from real events and the ones from mixed events, which are constructed by combining particles randomly selected from different real events. An evidence of singularity at sNN∼\sqrt{s_{NN}}\sim 60 GeV is first seen in the energy dependent non-statistical SS and SσS\sigma.Comment: 5 pages,5 figure

    Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence

    Get PDF
    Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (~10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about −1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of −5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona

    Prediction of triple point fermions in simple half-Heusler topological insulators

    Full text link
    We predict the existence of triple point fermions in the band structure of several half-Heusler topological insulators by ab initioab~initio calculations and the Kane model. We find that many half-Heusler compounds exhibit multiple triple points along four independent C3C_3 axes, through which the doubly degenerate conduction bands and the nondegenerate valence band cross each other linearly nearby the Fermi energy. When projected from the bulk to the (111) surface, most of these triple points are located far away from the surface Γˉ\bar{\Gamma} point, as distinct from previously reported triple point fermion candidates. These isolated triple points give rise to Fermi arcs on the surface, that can be readily detected by photoemission spectroscopy or scanning tunneling spectroscopy.Comment: 6 pages, 3 figures. The supplementary information is attached in the latex packag

    Regulation of MCM7 DNA Replication Licensing Activity

    Get PDF

    Telepath: Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems

    Full text link
    Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. From a human vision perspective, there're two key factors that affect users' behaviors: items' attractiveness and their matching degree with users' interests. This paper proposes Telepath, a vision-based bionic recommender system model, which understands users from such perspective. Telepath is a combination of a convolutional neural network (CNN), a recurrent neural network (RNN) and deep neural networks (DNNs). Its CNN subnetwork simulates the human vision system to extract key visual signals of items' attractiveness and generate corresponding activations. Its RNN and DNN subnetworks simulate cerebral cortex to understand users' interest based on the activations generated from browsed items. In practice, the Telepath model has been launched to JD's recommender system and advertising system. For one of the major item recommendation blocks on the JD app, click-through rate (CTR), gross merchandise value (GMV) and orders have increased 1.59%, 8.16% and 8.71% respectively. For several major ads publishers of JD demand-side platform, CTR, GMV and return on investment have increased 6.58%, 61.72% and 65.57% respectively by the first launch, and further increased 2.95%, 41.75% and 41.37% respectively by the second launch.Comment: 8 pages, 11 figures, 1 tabl

    The anomalous ZbbˉZb\bar{b} couplings at the HERA and EIC

    Full text link
    To resolve the long-standing discrepancy between the precision measurement of bottom quark forward-backward asymmetry at LEP/SLC and the Standard Model prediction, we propose a novel method to probe the ZbbˉZb\bar{b} coupling by measuring the single-spin asymmetry AebA_e^b of the polarized lepton cross section in neutral current DIS processes with a bb-tagged jet at HERA and EIC. Depending on the tagging efficiency of the final state bb-jet, the measurement of AebA_e^b at HERA can already partially break the degeneracy found in the anomalous ZbbˉZb\bar{b} coupling, as implied by the LEP and SLC precision electroweak data. In the first year run of the EIC, the measurement of AebA_e^b can already break the degeneracy, due to its much larger luminosity and higher electron beam polarization. With enough integrated luminosity collected at the EIC, it is possible to either verify or exclude the LEP data and resolve the AFBbA_{\rm FB}^b puzzle. We also discuss the complementary roles between the proposed AebA_e^b measurement at EIC and the measurement of gg→Zhgg \to Zh cross section at the HL-LHC in constraining the anomalous ZbbˉZb\bar{b} coupling.Comment: 6 pages, 2 figures, the published version in PL
    • …
    corecore