45,072 research outputs found

    On the Use of Marker Strategy Design to Detect Predictive Marker Effect in Cancer Immunotherapy

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The marker strategy design (MSGD) has been proposed to assess and validate predictive markers for targeted therapies and immunotherapies. Under this design, patients are randomized into two strategies: the marker-based strategy, which treats patients based on their marker status, and the non-marker-based strategy, which randomizes patients into treatments independent of their marker status in the same way as in a standard randomized clinical trial. The strategy effect is then tested by comparing the response rate between the two strategies and this strategy effect is commonly used to evaluate the predictive capability of the markers. We show that this commonly used between-strategy test is flawed, which may cause investigators to miss the opportunity to discover important predictive markers or falsely claim an irrelevant marker as predictive. Then we propose new procedures to improve the power of the MSGD to detect the predictive marker effect. One is based on a binary response endpoint; the second is based on survival endpoints. We conduct simulation studies to compare the performance of the MSGD with the widely used marker stratified design (MSFD). Numerical studies show that the MSGD and MSFD has comparable performance. Hence, contrary to popular belief that the MSGD is an inferior design compared with the MSFD, we conclude that using the MSGD with the proposed tests is an efficient and ethical way to find predictive markers for targeted therapies

    Hyperbolic Fracton Model, Subsystem Symmetry, and Holography

    Get PDF
    We propose that the fracton models with subsystem symmetry can be a class of toy models for the holographic principle. The discovery of the anti-de Sitter/conformal field theory correspondence as a concrete construction of holography and the subsequent developments including the subregion duality and Ryu-Takayanagi formula of entanglement entropy have revolutionized our understanding of quantum gravity and provided powerful tool sets for solving various strongly-coupled quantum field theory problems. To resolve many mysteries of holography, toy models can be very helpful. One example is the holographic tensor networks which illuminate the quantum error correcting properties of gravity in the anti-de Sitter space. In this work we discuss a classical toy model featuring subsystem symmetries and immobile fracton excitations. We show that such a model defined on the hyperbolic lattice satisfies some key properties of the holographic correspondence. The correct subregion duality and Ryu-Takayanagi formula for mutual information are established for a connected boundary region. A naively defined black hole's entropy scales as its horizon area. We also present discussions on corrections for more complicated boundary subregions, the possible generalizations of the model, and a comparison with the holographic tensor networks.Comment: 16 pages, 16 figures. Updated to the published version, with new title, two new sections, and a lot revision

    DSP Linearization for Millimeter-Wave All-Digital Receiver Array with Low-Resolution ADCs

    Full text link
    Millimeter-wave (mmWave) communications and cell densification are the key techniques for the future evolution of cellular systems beyond 5G. Although the current mmWave radio designs are focused on hybrid digital and analog receiver array architectures, the fully digital architecture is an appealing option due to its flexibility and support for multi-user multiple-input multiple-output (MIMO). In order to achieve reasonable power consumption and hardware cost, the specifications of analog circuits are expected to be compromised, including the resolution of analog-to-digital converter (ADC) and the linearity of radio-frequency (RF) front end. Although the state-of-the-art studies focus on the ADC, the nonlinearity can also lead to severe system performance degradation when strong input signals introduce inter-modulation distortion (IMD). The impact of RF nonlinearity becomes more severe with densely deployed mmWave cells since signal sources closer to the receiver array are more likely to occur. In this work, we design and analyze the digital IMD compensation algorithm, and study the relaxation of the required linearity in the RF-chain. We propose novel algorithms that jointly process digitized samples to recover amplifier saturation, and relies on beam space operation which reduces the computational complexity as compared to per-antenna IMD compensation.Comment: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC

    On black hole spectroscopy via adiabatic invariance

    Get PDF
    In this paper, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia=∮pidqiI_{\textrm{adia}}=\oint p_idq_i. Using it, the horizon area of a Schwarzschild black hole is quantized independent of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA=8πlp2\Delta \mathcal{A}=8\pi l_p^2 in the Schwarzschild and Painlev\'{e} coordinates.Comment: 13 pages, some references added, to be published in Phys. Lett.
    • …
    corecore