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In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity
and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling
framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity
should be of the covariant form Iadia = ∮

pi dqi . Using it, the horizon area of a Schwarzschild black hole
is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always
given by �A= 8π l2p in the Schwarzschild and Painlevé coordinates.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The study of black hole physics has been a long-standing and
hot topic in theoretical physics since the birth of Einstein’s theory
of gravitation. In particular, the exploration of the black hole en-
tropy/area quantum has an important physical significance, since
it may provide a window to find an effective way to quantize a
gravitational field. However, a self-consistent theory of quantum
gravitation was lacking so far. Hence, it may be an appropriate
juncture to “take a step back” and reenforce our understanding
of these issues at a semiclassical level. The semiclassical notion
that a black hole horizon should be endowed with a quantum
area spectrum, has its origin traced back to the profound revela-
tion of Bekenstein in the early seventies [2–4]. The idea is based
on the remarkable observation that the horizon area of a nonex-
tremal black hole behaves as a classical adiabatic invariant, which
in the spirit of Ehrenfest principle corresponds to a quantum en-
tity with discrete spectrum. In 2002, Kunstatter [5] furthered this
tapestry of idea to find, if a perturbed black hole is oscillating by
the real part ωR of the quasinormal mode frequencies, the action
I = ∫

dE/ωR is an adiabatic invariant, which results in an equally
spaced area spectrum with its value to be in agreement with the
one given by Hod [6] as well as by Bekenstein and Mukhanov [7].1

Here, one followed Hod’s proposal that the oscillating frequencies
of a black hole only come from the real part of the highly damped
qusinormal frequencies, and the imaginary part of it corresponds
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to the effective time for the black hole to return to a quiescent
state [6]. In 2007, Maggiore refined Hod’s treatment by arguing
that, insofar as a black hole is to be viewed as a damped harmonic
oscillator, the physically relevant frequency would actually contain
contributions from both real and imaginary parts of the complex
quasinormal mode frequencies [13]. Combining this new interpre-
tation for the black hole quasinormal frequencies with the black
hole property of adiabaticity, Maggiore found the horizon area
spectrum was exactly equal to the old result of Bekenstein [14–27].
Recently, an interesting notion [1]2 has shown that, utilizing solely
the black hole property of adiabaticity, one can also recover the
Bekenstein original result.3 It is noteworthy that there is no use at
all of the quasinormal frequencies to obtain their findings. In fact,
their “so-called” interesting observation is lack of adequate consid-
eration, which is reflected by: i) the quasinormal frequencies were
really absent in [1] to obtain the black hole spectroscopy via adi-
abatic invariance, but the periodicity of the Euclidean time τ was
introduced instead; ii) the adiabatic invariant quantity

∫
pi dqi pro-

posed in [1] was not canonically invariant.
In this Letter, we combine the black hole property of adiabatic-

ity with the oscillating velocity of the black hole horizon to revisit
the black hole spectroscopy. As an exchange for no use of the

2 Also, there are some other methods proposed recently to investigate entropy
spectrum and area spectrum [28–33].

3 In fact, there is an error in [1] for studying the integration of the Euclidean
time τ . In Section 4, we will show that, if the adiabatic invariant quantity is of the
form

∫
pi dqi , as stated in [1], a proper integration of the Euclidean time τ would

give twice the result of Bekenstein. Only when it is of the form
∮

pi dqi , one can
recover the result in [1].
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quasinormal frequencies, we introduce the oscillating velocity of
the black hole horizon to obtain the black hole spectroscopy via
adiabatic invariance. In the tunneling framework, the black hole
horizon can be assumed to oscillate periodically during the par-
ticle’s tunneling process. This notion follows Maggiore’s proposal
that the perturbed black hole can be treated as a set of harmonic
oscillators. At this point, when a particle tunnels out or in, the
action of the oscillating horizon is given by I = ∮

pi dqi = ∮ dH
q̇i

dqi ,
where for the spherically symmetric horizon, qi corresponds to the
Euclidean time τ and the black hole horizon rh . Moreover, if one
treats this action as an adiabatic invariant quantity, the black hole
spectroscopy can be semiclassically fixed in the spirit of the Bohr–
Sommerfield quantization rule. Before that, it is necessary to first
find the oscillating velocity of the black hole horizon ṙh . In the
tunneling picture, when a particle tunnels out or in, the black hole
horizon will oscillate due to the loss or gain of the black hole mass
[34]. The tunneling is simultaneous with the oscillating. That is,
the tunneling velocity of a particle is equal to the oscillating veloc-
ity of the black hole horizon ṙh [35]. With the aid of this oscillating
velocity of the black hole horizon ṙh and the adiabatic invariant
quantity Iadia = ∮

pi dqi , we can quantize the horizon area of a
Schwarzschild black hole.

The remainders of this Letter are outlined as follows. In Sec-
tion 2, to verify the fact that the adiabatic invariant quantity∫

pi dqi proposed in [1] is not canonically invariant, we quan-
tize the black hole horizon in two different (Schwarzschild and
Painlevé) reference frames, and provide its corresponding area
spectrum. Section 3 is devoted to using the adiabatic invariant
quantity of the covariant form Iadia = ∮

pi dqi to revisit the black
hole spectroscopy in the two reference frames. Section 4 ends up
with some discussions and conclusions. Finally, a Kruskal extension
in imaginary time appears in Appendix A.

2. Adiabatic invariant quantity I = ∫
pi dqi and black hole

spectroscopy

In [1], it has been shown that when one uses I = ∫
pi dqi for

the adiabatic invariant quantity, one could recover Bekenstein’s
area spectrum by combining the black hole property of adiabatic-
ity and the periodicity of the Euclidean time τ . In this section, we
aim to examine this adiabatic invariant quantity in two different
(Schwarzschild and Painlevé) reference frames by combining the
black hole property of adiabaticity and the oscillating velocity of
the black hole horizon, and provide its corresponding black hole
spectroscopy.

2.1. Black hole spectroscopy in the Schwarzschild coordinate

In the tunneling picture, when a particle tunnels out or in, the
black hole horizon will be vibrated due to the loss or gain of the
black hole mass [34]. According to [1], the action of the oscillating
horizon is given by

I =
∫

pi dqi, (1)

where pi is the conjugate momentum of the coordinate qi . For
the horizon of a Schwarzschild black hole, the coordinate qi corre-
sponds to q0 = τ and q1 = rh , where τ is the Euclidean time and
rh is the horizon of the black hole. Applying the Hamilton equa-
tion q̇i = dH

dpi
where H stands for the Hamiltonian of the system,

this action is rewritten as

∫
pi dqi =

∫ H∫
dH ′ dτ +

∫ H∫
dH ′

ṙh
drh = 2

∫ H∫
dH ′

ṙh
drh. (2)
0 0 0
Here, ṙh ≡ drh
dτ . Obviously, to evaluate the integral (2), we must first

find the oscillating velocity of the black hole horizon. In the tun-
neling picture, when a particle tunnels out or in, the black hole
horizon will shrink or expand due to the loss or gain of the black
hole mass. The tunneling and the oscillating take place at the same
time. Naturally, the tunneling velocity of a particle ṙ is equal and
opposite to the oscillating velocity of the black hole horizon ṙh ,
that is [35],

ṙh = −ṙ. (3)

Specifically, for a Schwarzschild black hole,

ds2 = f (r)dτ 2 + dr2

f (r)
+ r2 dΩ2, (4)

where the metric is euclideanized by introducing the transforma-
tion t → −iτ , if a photon travels across the black hole horizon, the
radial geodesics is given by

ṙ ≡ dr

dτ
= ±i f (r), (5)

where the +(−) sign corresponds to the outgoing (ingoing) paths.
When the photon tunnels out, the shrinking velocity of the black
hole horizon is

ṙh = −ṙ = −i f (r). (6)

Then, the action (2) is now read off

∫
pi dqi = −2i

∫ H∫
0

dH ′

f (r)
dr, (7)

where we apply the relation drh = −dr. At the horizon, r = 2M ,
there is a pole. To avoid it, we take a contour integral over a small
half-loop going above the pole from right to left. Now, if we treat
this action (7) as an adiabatic invariant quantity, performing the
integral as above yields [36,37]

Iadia =
∫

pi dqi = π

H∫
0

dH ′

κ
. (8)

Here, we only focus on the integration through r = 2M since it is
exactly where the adiabatic invariant quantity comes from,4 and
κ = 1

4M is the surface gravity of the Schwarzschild black hole. It is
well-known that the black hole temperature is related to the sur-
face gravity of the horizon by T = h̄κ

2π . Thus, the adiabatic invariant
quantity can be rewritten as

Iadia =
∫

pi dqi = h̄

2

H∫
0

dH ′

T
= h̄

2
Sbh, (9)

where in the last step we have employed the first law of black hole
thermodynamics

∫ H
0

dH ′
T = Sbh. According to the Bohr–Sommerfield

quantization rule as described in [1], the adiabatic invariant quan-
tity has an equally spaced spectrum in the semiclassical limit, that
is∫

pi dqi = nh. (10)

Now, implementing this quantization rule (10) for (9), the black
hole entropy is quantized evenly, with the spacing between the
entropy spectrum given by

�Sbh = 4π. (11)

4 This is because the adiabatic invariant quantity, as a measurable one, is real.
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Using the fact that the black hole entropy is proportional to the
black hole horizon area, i.e. Sbh = A

4l2p
, the quantum of the horizon

area is read off

�A = 16π l2p. (12)

Obviously, the horizon area is quantized and equidistant for the
Schwarzschild black hole. Here, we have used the action

∫
pi dqi

for an adiabatic invariant quantity, to obtain the black hole spec-
troscopy in the Schwarzschild coordinate, and find a “two” discrep-
ancy between the result given by us (12) and that in [1]. In fact,
it will be shown in Section 4 that there is an error for investigat-
ing the integral of the Euclidean time τ in [1], if it is appropriately
employed, the quantum of the horizon area (12) can also be recov-
ered. Obviously, in the Schwarzschild frame, if one uses the action∫

pi dqi for an adiabatic invariant quantity to fix the black hole
spectroscopy, one would obtain twice the result of Bekenstein. In
the following subsection, we examine this notion in Painlevé coor-
dinate.

2.2. Black hole spectroscopy in the Painlevé coordinate

In this subsection, we continue to use
∫

pi dqi for the adiabatic
invariant quantity to obtain the black hole spectroscopy in the
Painlevé coordinate. In the Painlevé coordinate [38], the coordinate
singularity is removed at the black hole horizon by introducing a
shifting of the time coordinate, i.e.

dτ ′ = dτ +
√

f (r) − 1

f (r)
dr, (13)

for (4), which yields

ds2 = f (r)dτ ′2 + 2
√

f (r) − 1 dτ ′ dr + dr2 + r2 dΩ2. (14)

This is the Painlevé–Schwarzschild metric, in which there is not
a coordinate singularity any more at the black hole horizon, and
constant-time slices are just flat Euclidean space. These attractive
features provide a superior setting for paths across the horizon. In
this coordinate, when a particle tunnels out, the black hole horizon
is shrinking by the velocity

ṙh = −i
(
1 − √

1 − f (r)
)
. (15)

Now, proceeding in a similar procedure as in (8), the adiabatic in-
variant quantity in Painlevé coordinate is read off

Iadia =
∫

pi dqi = −2i

∫ H∫
0

dH ′

1 − √
1 − f (r)

dr = 2π

H∫
0

dH ′

κ
.

(16)

Since the adiabatic invariant quantity corresponds to a quantum
system with an equally spaced spectrum, according to the Bohr–
Sommerfield quantization rule (10) we have

�Sbh = 2π, (17)

which is the spacing level of the entropy spectrum of the
Schwarzschild black hole. The same spacing was also obtained in
[39–41]. Obviously, in the Painlevé coordinate, the horizon area of
the Schwarzschild black hole is quantized by

�A = 8π l2p. (18)

This result is identical to Bekenstein’s area quantum, but is half
of the result (12) derived in the Schwarzschild coordinate. Obvi-
ously, the adiabatic invariant quantity of the form Iadia = ∫

pi dqi
is physically questionable since it is not invariant under coordinate
transformations, and its resulting quantum of the area spectrum
apparently depends on the type of coordinates. How can one rec-
oncile these various results? In the next section, we propose, if the
adiabatic invariant quantity of the covariant form Iadia = ∮

pi dqi ,
the area quantum is universally found independently of the choice
of coordinates.

3. Adiabatic invariant quantity Iadia = ∮
pi dqi and black hole

spectroscopy

In Section 2, the black hole spectroscopy is described by com-
bining the black hole property of adiabaticity with the oscillating
velocity of the black hole horizon. However, the proposed adia-
batic invariant quantity Iadia = ∫

pi dqi apparently depends on the
choice of coordinates, and one would obtain various results of the
area quantum with change of coordinate transformations. This is a
physically questionable observation. In [36,37], it was argued that
the closed contour integral,

∮
pi dqi , was invariant under coordi-

nate transformations, so we propose that the adiabatic invariant
quantity should be of the covariant form Iadia = ∮

pi dqi . In this
section, our effort is to clarify this proposal, and find the univer-
sal quantum of the horizon area in the Schwarzschild and Painlevé
coordinates.

3.1. Black hole spectroscopy in the Schwarzschild coordinate

In the tunneling picture, during the particle’s tunneling process,
we assume the black hole horizon is vibrated periodically, with its
action given by

I =
∮

pi dqi . (19)

Near the horizon, the closed contour integral can be seen by con-
sidering a closed path that goes from qi = qout

i , which is just out-
side the horizon, to qi = qin

i just inside the horizon, that is

∮
pi dqi =

qout
i∫

qin
i

pout
i dqi +

qin
i∫

qout
i

pin
i dqi, (20)

where pout
i (pin

i ) corresponds to the canonical momentum of the
coordinates qout

i (qin
i ). In the Schwarzschild coordinate, when a par-

ticle tunnels out or in a black hole, the oscillating velocity of the
black hole horizon is

ṙh = ±i f (r), (21)

where +(−) sign corresponds to the expanding (shrinking) ve-
locity of the black hole horizon. Applying the Hamilton equation,
q̇i = dH

dpi
, we find that the pout

i and pin
i have equal magnitude, but

opposite signs. In this case, the closed contour integral is obtained
by

∮
pi dqi = 2

qin
i∫

qout
i

pin
i dqi = −4i

rin∫
rout

H∫
0

dH ′

f (r)
dr. (22)

Now, if we treat the action (19) as an adiabatic invariant quantity,
doing the contour integral as in (8) for (22) yields

Iadia =
∮

pi dqi = 2π

H∫
0

dH ′

κ
= h̄

H∫
0

dH ′

T
= h̄Sbh. (23)

Here, the Hawking temperature of the black hole is given by
T = h̄κ , and in the last step we have exploited the first law of
2π
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black hole thermodynamics
∫ H

0
dH ′

T = Sbh, where Sbh is the black
hole entropy. Now, implementing the Bohr–Sommerfield quantiza-
tion rule∮

pi dqi = nh, (24)

the spacing level of the entropy spectrum is given by

�Sbh = 2π. (25)

Thus, its resulting area quantum is read off

�A = 8π l2p . (26)

This equally spaced area spectrum is half of the result of (12) ob-
tained in the Schwarzschild frame by using the action

∫
pi dqi for

an adiabatic invariant quantity, but in agreement with the Beken-
stein original result. That is to say, when one uses the action∮

pi dqi , rather than
∫

pi dqi for an adiabatic invariant quantity to
quantize the black hole horizon in the Schwarzschild coordinate,
the original result of Bekenstein could be well recovered. In the
next subsection, we remove this interest to the case of the Painlevé
frame.

3.2. Black hole spectroscopy in the Painlevé coordinate

In the Painlevé frame, the coordinate is well behaved at the
horizon by introducing a shifting of time coordinate as in (13). In
Section 3.1, we find, in the Schwarzschild coordinate, if one uses
the action

∮
pi dqi as an adiabatic invariant quantity, the spacing

level of the area spectrum is in agreement with the original result
by Bekenstein. In this subsection, we continue this interest in the
Painlevé coordinate. Here, the oscillating velocity of the black hole
horizon is

ṙh = −i
(±1 − √

1 − f (r)
)
, (27)

where the +(−) sign corresponds to the shrinking (expanding) ve-
locity of the black hole horizon. Obviously, when doing the closed
contour integral for the adiabatic invariant quantity

∮
pi dqi , the

integral
∫ qout

i

qin
i

pout
i dqi has no contribution in the Painlevé coordi-

nate, that is

∮
pi dqi =

qin
i∫

qout
i

pin
i dqi = −2i

rin∫
rout

H∫
0

dH ′

1 − √
1 − f (r)

dr. (28)

Integrating (28) near the black hole horizon, we have

Iadia =
∮

pi dqi = h̄

H∫
0

dH ′

T
= h̄Sbh. (29)

According to the Bohr–Sommerfield quantization rule (24), this
adiabatic system has an equally spaced entropy spectrum in the
semiclassical limit, that is

�Sbh = 2π, (30)

and an equally spaced area spectrum given by

�A = 8π l2p . (31)

This result shows that, in the Painlevé frame where the coordinate
is transformed from the Schwarzschild coordinate with a shifting
of the time coordinate, if one uses the action

∮
pi dqi for an adi-

abatic invariant quantity, the black hole spectroscopy is quantized
in the same manner as that in the Schwarzschild coordinate. This
is a physically desired result since the area quantum should be
invariant under the coordinate transformations. In a word, when
studying the black hole spectroscopy via adiabatic invariance, if
one treats the action

∮
pi dqi as an adiabatic invariant quantity, the

black hole spectroscopy is quantized independently of the choice
of coordinates, and the Bekenstein original result could be well re-
covered in the Schwarzschild and Painlevé coordinates.

4. Conclusion and discussion

In this Letter, the black hole spectroscopy is intriguingly de-
scribed by combining the black hole property of adiabaticity and
the oscillating velocity of the black hole horizon. Unlike Kunstat-
ter’s observation [5], there is no use at all of the quasinormal
frequency, but the oscillating velocity of the black hole horizon has
been introduced instead. To obtain the oscillating velocity, we cast
this issue into the tunneling framework. In particular, we declare,
if requiring invariance with change of the coordinate transforma-
tions, the adiabatic invariant quantity should be of the covariant
form Iadia = ∮

pi dqi . Using it, the black hole spectroscopy is quan-
tized independently of the choice of coordinates, and the Beken-
stein original result could be well recovered in different types
(Schwarzschild and Painlevé) of coordinates.

Some comments are followed: i) In the isotropic frame, where
the coordinates are transformed from the Schwarzschild coordi-
nates with a shifting of the spatial variables, if one uses the action∮

pi dqi for an adiabatic invariant quantity, one could also recover
the Bekenstein original result, as observed in the Schwarzschild
and Painlevé coordinates.

ii) In [1], it was argued that the well-known result by Beken-
stein could be well recovered by using the action

∫
pi dqi for an

adiabatic invariant quantity. In Section 2.1 of this Letter, we revisit
the black hole spectroscopy via this adiabatic invariant quantity,
but our found derivation is twice the result of Bekenstein. There
is a “two” discrepancy between them. Why does such a difference
appear? Next, we reconcile this discrepancy by restudying the inte-
gration of the Euclidean time τ in [1]. In particular, we will show
our proposed adiabatic invariant quantity Iadia = ∮

pi dqi is uni-
versal and intriguing. In the Schwarzschild coordinate, there is a
coordinate singularity at the horizon, so it is necessary to use the
Kruskal extension (T , X) to connect the coordinates between the
inside and outside the horizon. When substituted by T → −iT and
t → −iτ , the Kruskal extension in imaginary time is given by (A.2).
From this Kruskal-like extension it is found the inside (Tin, Xin)
and outside (Tout, Xout) coordinates are connected with each other
by the following relations [37]

τin → τout − π

2κ
, (r∗)in → (r∗)out − i

π

2κ
. (32)

Now, proceeding in a similar way as in [1], the adiabatic invariant
quantity is recalculated as Iadia = 2

∫ τout
τin

∫ H
0 dH ′ dτ = π

∫ H
0

dH ′
κ . In

view of the Bohr–Sommerfield quantization rule
∫

pi dqi = nh used
in [1], the quantum of the horizon area is obtained twice as the re-
sult of Bekenstein, as given in Section 2.1. Similarly, by investigat-
ing the integration of the Euclidean time τ as above, we can also
recover the results in Section 2.2 for the black hole in the Painlevé
coordinate. It is noteworthy that, in the Painlevé coordinate, since
the Euclidean time (τ ′) is related to that in the Schwarzschild co-
ordinate (τ ) via (13), we have τ ′

in → τ ′
out − π

κ . In a word, when
one uses the action

∫
pi dqi as an adiabatic invariant quantity, the

quantum of the area spectrum always depends on the choice of
coordinates. On the other hand, when the adiabatic invariant quan-
tity is taking by the closed path of integration, i.e. Iadia = ∮

pi dqi ,
by investigating the integration of the Euclidean time τ , the Beken-
stein result would be well recovered independently of the choice of
coordinates, as observed in Section 3. Interestingly, we once again
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verify the fact that, if requiring invariance with change of coordi-
nate transformations, the adiabatic invariant quantity should be of
the form Iadia = ∮

pi dqi , rather than Iadia = ∫
pi dqi .
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Appendix A. The Kruskal extension in the imaginary time

In the Schwarzschild coordinate, there is a coordinate singular-
ity at the horizon, so it is necessary to use the Kruskal extension

T in = 1

κ
eκ(r∗)in sinhκtin, Xin = 1

κ
eκ(r∗)in coshκtin,

Tout = 1

κ
eκ(r∗)out coshκtout, Xout = 1

κ
eκ(r∗)out sinhκtout,

(A.1)

where r∗ = ∫ dr
f (r) , to connect the coordinates between the inside

and outside the horizon. When substituted by T → −iT and t →
−iτ , we have

Tin = i

κ
eκ(r∗)in cosκτin, Xin = − i

κ
eκ(r∗)in sinκτin,

Tout = 1

κ
eκ(r∗)out sinκτout, Xout = 1

κ
eκ(r∗)out cosκτout. (A.2)

This is the Kruskal extension in the imaginary time.
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