418 research outputs found

    Substrate-induced half-metallic property in epitaxial silicene

    Full text link
    For most practical applications in electronic devices, two-dimensional materials should be transferred onto semiconducting or insulating substrates, since they are usually generated on metallic substrates. However, the transfer often leads to wrinkles, damages, contaminations and so on which would destroy the intrinsic properties of samples. Thus, generating two-dimensional materials directly on nonmetallic substrates has been a desirable goal for a long time. Here, via a swarm structure search method and density functional theory, we employed an insulating N-terminated cubic boron nitride(111) surface as a substrate for the generation of silicene. The result shows that the silicene behaves as a ferromagnetic half-metal because of the strong interaction between silicon and surface nitrogen atoms. The magnetic moments are mainly located on surface nitrogen sites without bonding silicon atoms and the value is about 0.12 uB. In spin-up channel, it behaves as a direct band gap semiconductor with a gap of around 1.35 eV, while it exhibits metallic characteristic in spin-down channel, and the half-metallic band gap is about 0.11 eV. Besides, both the magnetic and electronic properties are not sensitive to the external compressive strain. This work maybe open a way for the utility of silicene in spintronic field

    Graphene-like quaternary compound SiBCN: a new wide direct band gap semiconductor predicted by a first-principles study

    Full text link
    Due to the lack of two-dimensional silicon-based semiconductors and the fact that most of the components and devices are generated on single-crystal silicon or silicon-based substrates in modern industry, designing two-dimensional silicon-based semiconductors is highly desired. With the combination of a swarm structure search method and density functional theory in this work, a quaternary compound SiBCN with graphene-like structure is found and displays a wide direct band gap as expected. The band gap is of ~2.63 eV which is just between ~2.20 and ~3.39 eV of the highlighted semiconductors SiC and GaN. Notably, the further calculation reveals that SiBCN possesses high carrier mobility with ~5.14x10^3 and ~13.07x10^3 cm^2V^-1s^-1 for electron and hole, respectively. Furthermore, the ab initio molecular dynamics simulations also show that the graphene-like structure of SiBCN can be well kept even at an extremely high temperature of 2000 K. The present work tells that designing ulticomponent silicides may be a practicable way to search for new silicon-based low-dimensional semiconductors which can match well with the previous Si-based substrates

    Atomically thin mononitrides SiN and GeN: new two-dimensional semiconducting materials

    Full text link
    Low-dimensional Si-based semiconductors are unique materials that can both match well with the Si-based electronics and satisfy the demand of miniaturization in modern industry. Owing to the lack of such materials, many researchers put their efforts into this field. In this work, employing a swarm structure search method and density functional theory, we theoretically predict two-dimensional atomically thin mononitrides SiN and GeN, both of which present semiconducting nature. Furthermore study shows that SiN and GeN behave as indirect band gap semiconductors with the gap of 1.75 and 1.20 eV, respectively. The ab initio molecular dynamics calculation tells that both two mononitrides can exist stably even at extremely high temperature of 2000 K. Notably, electron mobilities are evaluated as 0.888x10310^3 cm2V−1s−1cm^2V^{-1}s^{-1} and 0.413x10310^3 cm2V−1s−1cm^2V^{-1}s^{-1} for SiN and GeN, respectively. The present work expands the family of low-dimensional Si-based semiconductors.Comment: arXiv admin note: text overlap with arXiv:1703.0389
    • …
    corecore