221 research outputs found

    GLOSSI: a method to assess the association of genetic loci-sets with complex diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developments of high-throughput genotyping technologies, which enable the simultaneous genotyping of hundreds of thousands of single nucleotide polymorphisms (SNP) have the potential to increase the benefits of genetic epidemiology studies. Although the enhanced resolution of these platforms increases the chance of interrogating functional SNPs that are themselves causative or in linkage disequilibrium with causal SNPs, commonly used single SNP-association approaches suffer from serious multiple hypothesis testing problems and provide limited insights into combinations of loci that may contribute to complex diseases. Drawing inspiration from Gene Set Enrichment Analysis developed for gene expression data, we have developed a method, named GLOSSI (Gene-loci Set Analysis), that integrates prior biological knowledge into the statistical analysis of genotyping data to test the association of a group of SNPs (loci-set) with complex disease phenotypes. The most significant loci-sets can be used to formulate hypotheses from a functional viewpoint that can be validated experimentally.</p> <p>Results</p> <p>In a simulation study, GLOSSI showed sufficient power to detect loci-sets with less than 10% of SNPs having moderate-to-large effect sizes and intermediate minor allele frequency values. When applied to a biological dataset where no single SNP-association was found in a previous study, GLOSSI was able to identify several loci-sets that are significantly related to blood pressure response to an antihypertensive drug.</p> <p>Conclusion</p> <p>GLOSSI is valuable for association of SNPs at multiple genetic loci with complex disease phenotypes. In contrast to methods based on the Kolmogorov-Smirnov statistic, the approach is parametric and only utilizes information from within the interrogated loci-set. It properly accounts for dependency among SNPs and allows the testing of loci-sets of any size.</p

    MicroRNA Networks in Mouse Lung Organogenesis

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. METHODS: We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. RESULTS: In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. CONCLUSION: Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis

    3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC).</p> <p>Results</p> <p>Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays.</p> <p>Conclusion</p> <p>3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.</p

    Genome-Wide Transcriptional Profiling Reveals MicroRNA-Correlated Genes and Biological Processes in Human Lymphoblastoid Cell Lines

    Get PDF
    Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs) are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs.To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs) in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01). Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b) demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation.This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of human populations

    Meta-analysis of 8q24 for seven cancers reveals a locus between NOV and ENPP2 associated with cancer development.

    Get PDF
    BACKGROUND: Human chromosomal region 8q24 contains several genes which could be functionally related to cancer, including the proto-oncogene c-MYC. However, the abundance of associations around 128 Mb on chromosome 8 could mask the appearance of a weaker, but important, association elsewhere on 8q24. METHODS: In this study, we completed a meta-analysis of results from nine genome-wide association studies for seven types of solid-tumor cancers (breast, prostate, pancreatic, lung, ovarian, colon, and glioma) to identify additional associations that were not apparent in any individual study. RESULTS: Fifteen SNPs in the 8q24 region had meta-analysis p-values < 1E-04. In particular, the region consisting of 120,576,000-120,627,000 bp contained 7 SNPs with p-values < 1.0E-4, including rs6993464 (p = 1.25E-07). This association lies in the region between two genes, NOV and ENPP2, which have been shown to play a role in tumor development and motility. An additional region consisting of 5 markers from 128,478,000 bp - 128,524,000 (around gene POU5F1B) had p-values < 1E-04, including rs6983267, which had the smallest p-value (p = 6.34E-08). This result replicates previous reports of association between rs6983267 and prostate and colon cancer. CONCLUSIONS: Further research in this area is warranted as these results demonstrate that the chromosomal region 8q24 may contain a locus that influences general cancer susceptibility between 120,576 and 120,630 kb.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASLĀ® platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel<sup>v1 </sup>(1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.</p> <p>Methods</p> <p>Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance <it>t</it>-statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI).</p> <p>Results</p> <p>Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, <it>erythroblastic leukemia viral oncogene homolog 2 </it>(<it>ERBB2</it>) was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values < 0.05 and log2 -fold changes > |0.5| in expression between HER2 + and HER2 - tumors: <it>topoisomerase II alpha </it>(<it>TOP2A</it>), <it>cyclin a2 </it>(<it>CCNA2</it>), <it>v-fos fbj murine osteosarcoma viral oncogene homolog </it>(<it>FOS</it>), <it>wingless-type mmtv integration site family, member 5a </it>(<it>WNT5A</it>), <it>growth factor receptor-bound protein </it><it>7 </it>(<it>GRB7</it>), <it>cell division cycle 2 </it>(<it>CDC2</it>), <it>and baculoviral iap repeat-containing protein 5 </it>(<it>BIRC5</it>). The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around <it>v-myc avian myelocytomatosis viral oncogene homolog </it>(<it>MYC</it>), <it>tumor protein p53 </it>(<it>TP53</it>), and <it>estrogen receptor Ī± </it>(<it>ESR1</it>). Network analysis with a two-step extension also showed that the eight discriminating genes common to the 1.5K and 24K panels are functionally linked together through <it>MYC</it>, <it>TP53</it>, and <it>ESR1</it>.</p> <p>Conclusions</p> <p>The relative RNA abundance obtained from two highly differing density gene panels are correlated with eight common genes differentiating HER2 + and HER2 - breast tumors. Network analyses demonstrated biological consistency between the 1.5K and 24K gene panels.</p

    Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    Get PDF
    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFĪŗB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on geneā€“gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFĪŗB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARĪ³ signaling pathways, suggesting that targeted PPARĪ³ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations

    Role of PLEXIND1/TGFĪ² signaling axis in pancreatic ductal adenocarcinoma progression correlates with the mutational status of KRAS

    Get PDF
    PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFĪ²) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFĪ² coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status
    • ā€¦
    corecore