27 research outputs found

    Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10

    Get PDF
    9月20日,《科学》子刊《科学•进展》(Science Advances)刊出了我校夏宁邵教授团队发表的题为“Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10”的研究论文。该研究首次发现手足口病重要病原体柯萨奇病毒A组10型(CVA10)不同类型病毒颗粒共有的优势中和表位,揭示了病毒颗粒及其与优势中和抗体复合物的精确三维结构,阐明了中和抗体的功能与作用机制,为新型疫苗和治疗药物的研制提供了重要的理论基础。 该研究首次揭示并描绘了CVA10的病毒颗粒及其优势中和表位的精确特征,发现了具有良好应用潜能的治疗性中和抗体,为新型疫苗和特异性治疗药物的研究提供了关键基础。 我校夏宁邵教授、程通副教授和美国加州大学洛杉矶分校纳米系统研究所Z. Hong Zhou(周正洪)教授、美国加州大学圣地亚哥分校颜晓东博士为该论文的共同通讯作者。我校博士生朱瑞、徐龙发博士后、郑清炳工程师、李少伟教授和美国加州大学洛杉矶分校崔彦祥博士后为该论文共同第一作者。【Abstract】Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo–electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8’s remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.This work was supported by grants from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (2017ZX10304402-002-003), the National Natural Science Foundation of China (31670933 and 81801646), and the National Institutes of Health (R37-GM33050, GM071940, DE025567, and AI094386). We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by the University of California, Los Angeles and by instrumentation grants from NIH (1S10RR23057 and 1U24GM116792) and NSF (DBI-1338135 and DMR-1548924). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助

    Identification of antibodies with non-overlapping neutralization sites that target coxsackievirus A16

    Get PDF
    手足口病(Hand, Foot and Mouth Disease,HFMD)是一种由人肠道病毒引起的全球性传染病,主要发生于5岁以下的婴幼儿。2月5日,我校夏宁邵教授团队在《细胞》子刊《细胞•宿主与微生物》(Cell Host & Microbe)上在线发表题为“Identification of antibodies with non-overlapping neutralization sites that target coxsackievirus A16”的研究论文。该研究首次揭示了手足口病主要病原体柯萨奇病毒A组16型(CVA16)三种衣壳颗粒形式与三种不同类型的治疗性中和抗体的全面相互作用细节和非重叠的中和表位结构信息,阐明了CVA16成熟颗粒是疫苗候选主要保护性免疫原的理论基础,建立了可指导疫苗研制的免疫原特异检测方法,为CVA16疫苗及抗病毒药物研究提供关键基础。我校夏宁邵教授、李少伟教授、程通副教授和美国加州大学洛杉矶分校纳米系统研究所Z. Hong Zhou(周正洪)教授为该论文的共同通讯作者。我校博士生何茂洲、徐龙发博士后、郑清炳高级工程师、博士生朱瑞和尹志超为该论文共同第一作者。【Abstract】Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms—the mature virion, A-particle, and empty particle—and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.This work was supported by grants from the Major Program of National Natural Science Foundation of China ( 81991490 ), the National Science and Technology Major Projects for Major New Drugs Innovation and Development ( 2018ZX09711003-005-003 ), the National Science and Technology Major Project of Infectious Diseases ( 2017ZX10304402-002-003 ), the National Natural Science Foundation of China ( 31670933 and 81801646 ), the China Postdoctoral Science Foundation ( 2018M640599 and 2019T120557 ), the Principal Foundation of Xiamen University ( 20720190117 ), and the National Institutes of Health ( R37-GM33050 , GM071940 , DE025567 , and AI094386 ). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助
    corecore