83 research outputs found

    Three-dimensional analysis of upper airway morphology in skeletal Class III patients with and without mandibular asymmetry

    Get PDF
    Objective: To compare the three-dimensional (3D) morphology of the upper airway in skeletal Class III patients with and without mandibular asymmetry and to investigate the possible underlying correlations between the morphology of the upper airway and mandibular deviation. Materials and Methods: Cone-beam computed tomography images of 54 subjects with skeletal Class III malocclusion (ANB angle <= 0.4 degrees, Wits <= -5.5 degrees) were taken and 3D upper airway models were reconstructed using Dolphin 3D software. According to the distance (d) from symphysis menti to the sagittal plane, all subjects were divided into a symmetry group (d <= 2 mm) and an asymmetry group (d >= 4 mm). Based on the severity of mandibular deviation, the asymmetry group was divided into subgroup I (4 mm <= d <10 mm) and subgroup II (d >= 10 mm). Cross-sectional linear distances, areas, and volumetric variables of the upper airway were measured in the 3D airway model. Results: Width of the inferior limit of the glossopharynx (P3W), cross-sectional area of the anterior limit of the nasal airway (P5S), and height of the glossopharynx (GPH) in the asymmetry group were significantly larger than in the symmetry group. As for subjects with severe mandibular deviation in subgroup II (d >= 10 mm), volume of the glossopharynx (GPV), total volume of the pharynx (TPV), length of the inferior limit of the velopharynx (P2L), and ratio of length to width of the inferior limit of the velopharynx (P2L/P2W) showed significantly negative correlations with mandibular deviation (r > 0.7, P <.05). Conclusions: In Class III subjects with severe mandibular asymmetry, the pharyngeal airway showed a tendency toward constriction and presented a more elliptical shape as mandibular deviation became more severe (P <.01).SCI(E)ARTICLE4526-5338

    Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys

    Get PDF
    Additive manufacturing of NiTi shape memory alloys has attracted attention in recent years, due to design flexibility and feasibility to achieve four-dimensional (4D) function response. To obtain customized 4D functional responses in NiTi structures, tailorable phase transformation temperatures and stress windows as well as one-way or two-way shape memory properties are required. To achieve this goal, various heat treatments, including direct aging, annealing and annealing followed by aging, were optimized for the Ti-rich NiTi (Ni49.6Ti (at. %)) fabricated by laser powder bed fusion (L-PBF). Microstructural evolution, phase transformation, precipitation and shape memory behaviour were systematically investigated by multiscale correlative microstructural, differential scanning calorimetry analysis and thermomechanical analysis. Based on optimized heat treatments, ∼25 K phase transformation temperature windows and ∼90 MPa stress windows were achieved for the one-way shape memory effect. Solutionized annealing was found to be the most effective way to improve one-way shape memory degradation resistance, due to the reduction of defects and solid solution strengthening. One of the main findings of this study is that the heterogonous microstructures between hard intergranular Ti2NiOx and soft NiTi matrix, induced by solutionized annealing with subsequent aging, result in strain partitioning and enclosing the internal stress state, which was found to promote a pronounced two-way shape memory effect response. The results of this work provide in-depth knowledge on tailoring and designing functional shape memory characteristics via heat treatments, which contributes to expanding L-PBF NiTi application fields, such as biomedical implants, aerospace components, and other advanced engineering applications.</p

    Identification of potential inhibitors of omicron variant of SARS-Cov-2 RBD based virtual screening, MD simulation, and DFT

    Get PDF
    Emergence of the SARS-CoV-2 Omicron variant of concern (VOC; B.1.1.529) resulted in a new peak of the COVID-19 pandemic, which called for development of effective therapeutics against the Omicron VOC. The receptor binding domain (RBD) of the spike protein, which is responsible for recognition and binding of the human ACE2 receptor protein, is a potential drug target. Mutations in receptor binding domain of the S-protein have been postulated to enhance the binding strength of the Omicron VOC to host proteins. In this study, bioinformatic analyses were performed to screen for potential therapeutic compounds targeting the omicron VOC. A total of 92,699 compounds were screened from different libraries based on receptor binding domain of the S-protein via docking and binding free energy analysis, yielding the top 5 best hits. Dynamic simulation trajectory analysis and binding free energy decomposition were used to determine the inhibitory mechanism of candidate molecules by focusing on their interactions with recognized residues on receptor binding domain. The ADMET prediction and DFT calculations were conducted to determine the pharmacokinetic parameters and precise chemical properties of the identified molecules. The molecular properties of the identified molecules and their ability to interfere with recognition of the human ACE2 receptors by receptor binding domain suggest that they are potential therapeutic agents for SARS-CoV-2 Omicron VOC
    corecore