33 research outputs found

    A Novel Radar-Absorbing-Material Based on EBG Structure

    No full text
    A navel ultra-thin radar-absorbing material (RAM) using metanwterials is presented and the absorption performance is examined. Due to the high-impedance property of the metamalerials. the thickness of the RAM is about several tenths of the center wavelength of the absorption band, which is considerably thinner than conventional absorbers. The absorption bandwidth of the RAM is about several hundred megahert

    Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    No full text
    Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution

    Isolation and Identification of a Novel Rabies Virus Lineage in China with Natural Recombinant Nucleoprotein Gene

    Get PDF
    <div><p>Rabies virus (RABV) causes severe neurological disease and death. As an important mechanism for generating genetic diversity in viruses, homologous recombination can lead to the emergence of novel virus strains with increased virulence and changed host tropism. However, it is still unclear whether recombination plays a role in the evolution of RABV. In this study, we isolated and sequenced four circulating RABV strains in China. Phylogenetic analyses identified a novel lineage of hybrid origin that comprises two different strains, J and CQ92. Analyses revealed that the virus 3β€² untranslated region (UTR) and part of the <em>N</em> gene (approximate 500 nt in length) were likely derived from Chinese lineage I while the other part of the genomic sequence was homologous to Chinese lineage II. Our findings reveal that homologous recombination can occur naturally in the field and shape the genetic structure of RABV populations.</p> </div

    Analysis of the origin of the CQ92 lineage in different regions of the <i>N</i> gene delimited by the putative breakpoints.

    No full text
    <p>(A) A split tree inferred from the complete <i>N</i> gene sequence showing the evolutionary relationship. A networked pattern of mosaic lineage was found to be related to lineages GX4 and SH06. The Neighbor-Net tree was constructed by employing the SplitsTree4 program. (B) Phylogenetic relationships from positions 180 to 598 of CQ92 genome. (D) Phylogenetic relationship of the <i>N</i> gene fragment from positions 1–179 and 599–891. (D) Phylogenetic relationship of positions 892–1423. The evolutionary history of each fragment was inferred using the maximum likelihood method with the Kimura 2-parameter substitution model and Neighbor-Joining (NJ) method with the Maximum Composite Likelihood model. The percentage (>80%) of replicate ML trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown beside the branches. The NJ tree bootstrap values of the branch associated with recombinant strain are shown in parentheses. The tree is drawn to scale, with branch lengths shown in the same units as those of the evolutionary distances used to infer the phylogenetic tree. β–ͺ, mosaics.</p

    Analysis of recombination breakpoints.

    No full text
    <p>(A) The bootscan result of CQ92, GX4 and SH06 complete genome. RC-HL was used as the outgroup. The window size was set at 600 bp to avoid noise from gene mutations. (B) The bootscan result of region from positions 1–1423. The parameters used for analysis are shown on the bottom row of the figure. The window size was set at 300 bp. The three crossover sites are represented by vertical lines. (C) The statistical analysis of informative sites. Vertical lines represent the recombination breakpoints with the maximization of Ο‡<sup>2</sup>. Ο‡<sup>2</sup> of each breakpoint and <i>P</i>-value of Fisher’s exact test are shown under the vertical lines.</p
    corecore