143 research outputs found

    Calcium–magnesium–alumina–silicate (CMAS) resistance of LaPO4 thermal barrier coatings

    Get PDF
    Nanostructured LaPO4 thermal barrier coatings (TBCs) were prepared by air plasma spraying, and their resistance to calcium–magnesium–alumina–silicate (CMAS) attack at 1250 °C, 1300 °C and 1350 °C was investigated. The reaction products were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy. Exposed to CMAS attack for 0.5 h, a continuous dense reaction layer formed, which was mainly composed of P–Si apatite based on Ca2+xLa8-x(PO4)x(SiO4)6-xO2, anorthite and spinel phases. Beneath the reaction layer, little evidence of CMAS trace could be found. With the increase in temperature and heat treatment duration, the reaction layer became thick, while penetration depth of the molten CMAS changed slightly. Due to the formation of a reaction layer suppressing CMAS further infiltration, LaPO4 TBCs are highly resistant to CMAS attack

    Construction of microbial consortia for microbial degradation of complex compounds

    Get PDF
    Increasingly complex synthetic environmental pollutants are prompting further research into bioremediation, which is one of the most economical and safest means of environmental restoration. From the current research, using microbial consortia to degrade complex compounds is more advantageous compared to using isolated bacteria, as the former is more adaptable and stable within the growth environment and can provide a suitable catalytic environment for each enzyme required by the biodegradation pathway. With the development of synthetic biology and gene-editing tools, artificial microbial consortia systems can be designed to be more efficient, stable, and robust, and they can be used to produce high-value-added products with their strong degradation ability. Furthermore, microbial consortia systems are shown to be promising in the degradation of complex compounds. In this review, the strategies for constructing stable and robust microbial consortia are discussed. The current advances in the degradation of complex compounds by microbial consortia are also classified and detailed, including plastics, petroleum, antibiotics, azo dyes, and some pollutants present in sewage. Thus, this paper aims to support some helps to those who focus on the degradation of complex compounds by microbial consortia

    Danhong Injection Reversed Cardiac Abnormality in Brain–Heart Syndrome via Local and Remote β-Adrenergic Receptor Signaling

    Get PDF
    Ischemic brain injury impacts cardiac dysfunction depending on the part of the brain affected, with a manifestation of irregular blood pressure, arrhythmia, and heart failure. Generally called brain–heart syndrome in traditional Chinese medicine, few mechanistic understanding and treatment options are available at present. We hypothesize that considering the established efficacy for both ischemic stroke and myocardial infarction (MI), Danhong injection (DHI), a multicomponent Chinese patent medicine, may have a dual pharmacological potential for treating the brain–heart syndrome caused by cerebral ischemic stroke through its multi-targeted mechanisms. We investigated the role of DHI in the setting of brain–heart syndrome and determined the mechanism by which it regulates this process. We induced Ischemia/Reperfusion in Wistar rats and administered intravenous dose of DHI twice daily for 14 days. We assessed the neurological state, infarct volume, CT scan, arterial blood pressure, heart rhythm, and the hemodynamics. We harvested the brain and heart tissues for immunohistochemistry and western blot analyses. Our data show that DHI exerts potent anti-stroke effects (infarct volume reduction: ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. vehicle. Neurological deficit correction: ∗p < 0.05 and ∗∗∗p < 0.001 vs. vehicle), and effectively reversed the abnormal arterial pressure (∗p < 0.05 vs. vehicle) and heart rhythm (∗∗p < 0.01 vs. vehicle). The phenotype of this brain–heart syndrome is strikingly similar to those of MI model. Quantitative assessment of hemodynamic in cardiac functionality revealed a positive uniformity in the PV-loop after administration with DHI and valsartan in the latter. Immunohistochemistry and western blot results showed the inhibitory effect of DHI on the β-adrenergic pathway as well as protein kinase C epsilon (PKCε) (∗∗p < 0.01 vs. model). Our data showed the underlying mechanisms of the brain–heart interaction and offer the first evidence that DHI targets the adrenergic pathway to modulate cardiac function in the setting of brain–heart syndrome. This study has made a novel discovery for proper application of the multi-target DHI and could serve as a therapeutic option in the setting of brain–heart syndrome

    Graphene controlled Brewster angle device for ultra broadband terahertz modulation

    Get PDF
    Terahertz modulators with high tunability of both intensity and phase are essential for effective control of electromagnetic properties. Due to the underlying physics behind existing approaches there is still a lack of broadband devices able to achieve deep modulation. Here, we demonstrate the effect of tunable Brewster angle controlled by graphene, and develop a highly-tunable solid-state graphene/quartz modulator based on this mechanism. The Brewster angle of the device can be tuned by varying the conductivity of the graphene through an electrical gate. In this way, we achieve near perfect intensity modulation with spectrally flat modulation depth of 99.3 to 99.9 percent and phase tunability of up to 140 degree in the frequency range from 0.5 to 1.6 THz. Different from using electromagnetic resonance effects (for example, metamaterials), this principle ensures that our device can operate in ultra-broadband. Thus it is an effective principle for terahertz modulation

    Inhibitory Kinetics of Cyanidin-3-O-glucoside against α-Amylase and α-Glucosidase

    Get PDF
    The inhibitory mechanism of α-amylase and α-glucosidase by cyanidin-3-O-glucoside was investigated by ultrafiltration, high performance liquid chromatography (HPLC), enzyme kinetics, and molecular docking. The results indicated that cyanidin-3-O-glucoside inhibited α-amylase and α-glucosidase in a reversible and non-competitive manner. Besides, the fluorescence quenching analysis indicated that cyanidin-3-O-glucoside combined with the two enzymes by hydrogen bonds to form a complex. Molecular docking analysis showed that cyanidin-3-O-glucoside interacted with the key amino acid residues of α-amylase and α-glucosidase through hydrogen bonds and hydrophobic forces, and the binding energies were −7.8 and −9.8 kcal/mol, respectively. Our research suggests that cyanidin-3-O-glucoside has the potential to be used as an inhibitor of α-amylase and α-glucosidase in the development of functional foods

    Effect of microencapsulation of egg yolk immunoglobulin Y by sodium alginate/chitosan/sodium alginate on the growth performance, serum parameters, and intestinal health of broiler chickens

    Get PDF
    Objective Egg yolk immunoglobulin (IgY) is an antibiotic alternative to prevent and fight intestinal pathogenic infections. This study aimed to investigate the effects of sodium alginate/chitosan/sodium alginate IgY microcapsules on the growth performance, serum parameters, and intestinal health of broiler chickens. Methods One-day-old broilers (Ross 308) were divided into five treatments, each with 10 replicates of five chickens. The dietary treatments were maintained for 28 days and consisted of a basal diet (NC), basal diet + 500 mg chlortetracycline/kg diet (CH), basal diet + 50 mg non-microencapsulated IgY/kg diet (NM), basal diet + 600 mg low levels microencapsulated IgY/kg diet (LM), and basal diet + 700 mg high levels microencapsulated IgY/kg diet (HM). Results Throughout the 28-day trial period, the NM, LM, HM, and CH groups increased average daily gain compared with the NC group (p<0.05), and the HM group reduced feed conversion ratio compared with the CH group (p<0.05). The LM and HM groups increased relative organ weights of thymus and spleen compared with the CH and NM groups (p< 0.05). The HM group improved the duodenal, jejunal and ileum villi height (VH) and villus height to crypt depth ratio (VH:CD) compared with the CH and NM groups (p<0.05). Compared with the CH group, the HM group increased serum immunoglobulin (IgA), immunoglobulin G (IgG), superoxide dismutase, total antioxidant capacity, and glutathione peroxidase levels (p<0.05), and decreased serum malondialdehyde levels (p<0.05). Compared with the NC group, the NM, LM, HM, and CH groups reduced colonic Escherichia coli and Salmonella levels (p<0.05). and the HM group promoted the levels of lactic acid bacteria and bifidobacteria compared with the CH group (p<0.05). Conclusion Microencapsulation could be considered as a way to improve the efficiency of IgY. The 700 mg high levels microencapsulated IgY/kg diet could potentially be used as an alternative to antibiotics to improve the immune performance and intestinal health, leading to better performance of broiler chickens

    Independent Association of Serum Fibroblast Growth Factor 21 Levels With Impaired Liver Enzymes in Hyperthyroid Patients

    Get PDF
    Fibroblast growth factor 21 (FGF21) is identified as a potential biomarker for liver diseases. However, information is limited regarding serum FGF21 and impaired liver function in hyperthyroidism. We aim to determine the potential association of serum FGF21 levels with impaired liver enzymes in hyperthyroid patients. In this case-control study, 105 normal subjects and 122 overt hyperthyroid patients were included. Among them, 41 hyperthyroid patients who obtained euthyroid status after thionamide treatment received second visit. Serum FGF21 levels were determined using the ELISA method. Compared to the normal subjects, patients with hyperthyroidism had significantly elevated serum liver enzymes, including alanine transaminase (ALT) (p &lt; 0.001), aspartate aminotransferase (AST) (p &lt; 0.001) levels, as well as FGF21 levels (p &lt; 0.001). Further analysis showed serum FGF21 (p &lt; 0.05), as well as thyroid hormone (TH) free T3 (p &lt; 0.05), free T4 (p &lt; 0.05) levels were higher in hyperthyroid patients with impaired liver enzymes than in those with normal liver enzymes. After reversal of hyperthyroid state, elevated serum FGF21 levels in hyperthyroid patients declined significantly (p &lt; 0.001), with a concomitant decrease in serum ALT (p &lt; 0.001), AST (p &lt; 0.001) levels. Correlation analysis showed close correlation between FGF21 and ALT (p &lt; 0.002), AST (p &lt; 0.012), free T3 (p &lt; 0.001), free T4 (p &lt; 0.001). Further logistic regression analysis revealed FGF21 is significantly associated with elevated ALT [Odds Ratio, OR 1.79, (95% confidence interval, CI), (1.30–2.47), P &lt; 0.001], AST [1.59 (1.07–2.34), p &lt; 0.020]. After adjustment of potential confounders, the association between FGF21 and elevated ALT remained significant [1.42 (1.01–1.99), p &lt; 0.043]. In conclusion, serum FGF21 is independently associated with impaired liver enzymes in hyperthyroid patients

    Predictors of failure of early neurological improvement in early time window following endovascular thrombectomy: a multi-center study

    Get PDF
    Background and objectiveEndovascular thrombectomy (EVT) has become the gold standard in the treatment of acute stroke patients. However, not all patients respond well to this treatment despite successful attempts. In this study, we aimed to identify variables associated with the failure of improvements following EVT.MethodsWe retrospectively analyzed prospectively collected data of 292 ischemic stroke patients with large vessel occlusion who underwent EVT at three academic stroke centers in China from January 2019 to February 2022. All patients were above 18 years old and had symptoms onset ≤6 h. A decrease of more than 4 points on the National Institute of Health Stroke Scale (NIHSS) after 24 h compared with admission or an NIHSS of 0 or 1 after 24 h was defined as early neurological improvement (ENI), whereas a lack of such improvement in the NIHSS was defined as a failure of early neurological improvement (FENI). A favorable outcome was defined as a modified Rankin scale (mRS) score of 0–2 after 90 days.ResultsA total of 183 patients were included in the final analyses, 126 of whom had FENI, while 57 had ENI. Favorable outcomes occurred in 80.7% of patients in the ENI group, in contrast to only 22.2% in the FENI group (p &lt; 0.001). Mortality was 7.0% in the ENI group in comparison to 42.1% in the FENI group (p &lt; 0.001). The multiple logistic regression model showed that diabetes mellitus [OR (95% CI), 2.985 (1.070–8.324), p = 0.037], pre-stroke mRS [OR (95% CI), 6.221 (1.421–27.248), p = 0.015], last known well to puncture time [OR (95% CI), 1.010 (1.003–1.016), p = 0.002], modified thrombolysis in cerebral infarction = 3 [OR (95% CI), 0.291 (0.122–0.692), p = 0.005], and number of mechanical thrombectomy passes [OR (95% CI), 1.582 (1.087–2.302), p = 0.017] were the predictors of FENI.ConclusionDiabetes mellitus history, pre-stroke mRS, longer last known well-to-puncture time, lack of modified thrombolysis in cerebral infarction = 3, and the number of mechanical thrombectomy passes are the predictors of FENI. Future large-scale studies are required to validate these findings
    • …
    corecore