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Increasingly complex synthetic environmental pollutants are prompting further

research into bioremediation, which is one of the most economical and safest

means of environmental restoration. From the current research, usingmicrobial

consortia to degrade complex compounds is more advantageous compared to

using isolated bacteria, as the former is more adaptable and stable within the

growth environment and can provide a suitable catalytic environment for each

enzyme required by the biodegradation pathway. With the development of

synthetic biology and gene-editing tools, artificial microbial consortia systems

can be designed to bemore efficient, stable, and robust, and they can be used to

produce high-value-added products with their strong degradation ability.

Furthermore, microbial consortia systems are shown to be promising in the

degradation of complex compounds. In this review, the strategies for

constructing stable and robust microbial consortia are discussed. The

current advances in the degradation of complex compounds by microbial

consortia are also classified and detailed, including plastics, petroleum,

antibiotics, azo dyes, and some pollutants present in sewage. Thus, this

paper aims to support some helps to those who focus on the degradation

of complex compounds by microbial consortia.
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Introduction

In recent years, increasingly serious pollution has been a major threat to public health,

and more and more people are putting forward higher requirements for environmental

restoration. Microbial environmental remediation is cleaner and more economical than

the traditional burning landfill, which causes subsequent environmental pollution. The

use of microbial consortia to degrade various pollutants into non-toxic or less-toxic

compounds is a better option (Azubuike et al., 2016). At present, research on
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bioremediation by microbial consortia has practical significance,

and it has already been applied in some cases. As shown in

Figure 1, microbial consortia can degrade complex compounds,

including plastics, petroleum, antibiotics, azo dyes, and some

pollutants present in sewage. Furthermore, it also can be used in

consolidated bioprocessing (CBP), which is a great solution to

energy shortages. Petroleum hydrocarbons and plastics can also

be used as raw materials for the production of high-value-added

products. Because of the excellent degradation ability of

microbial consortia for complex compounds, they are more

commonly used than the single stain in environmental

remediation. For example, they can well degrade the complex

compounds in soil and sewage. Furthermore, shrubs and trees

can be planted on the treated soil, and the treated sewage can be

used as irrigation water for non-edible commercial crops (Biswas

et al., 2021).

Creating an artificial microbial consortia system distributes

the desired multiple catalytic enzyme expression pathways to

different strains, and then co-culturing all strains to complete the

task (Zhang and Stephanopoulos, 2016; Li Z. et al., 2019). The

microbial consortia can degrade complex compounds that

cannot be decomposed by a single bacterial system, such as

starch and cellulose. Some complex compounds are difficult to be

degraded due to their complex structures. However, some strains

can break down these complex substrates into small-molecule

sugars that can be used as carbon sources for other strains in the

system (Wang S. et al., 2019; Tondro et al., 2020). For strains in

the consortia, the rational division of metabolic pathways can

reduce cross-reactions and thus the metabolic burden of each cell

(Said and Or, 2017; Shen et al., 2020). Compared with a natural

microbial consortia system, the composition of an artificial

microbial consortia system is simpler, the division of labor is

clearer, and it can be further modified for different target

products (Qian et al., 2020; Zhang and Hong, 2020). Thus, a

microbial consortium can be constructed to degrade a wide range

of complex compounds precisely, which can enable the modular

assembly and optimization of metabolic pathways by modulating

the microbial consortia structure (Jones et al., 2017; Jones and

Wang, 2018; Roell et al., 2019). Cross-feeding between bacteria

can also be used to eliminate feedback inhibition and remove

products or by-products, which is important for improving the

degradation efficiency of complex compounds (Zhou et al.,

FIGURE 1
Microbial consortia bioremediation and reuse of complex compounds.
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2015). Microbial consortia also have strong adaptability to, and

stability within, complex environments (Kaeberlein et al., 2002).

After a variety of cells with different functions are fused, the

dynamic balance is maintained through complex interactions

between cells, making the entire system more adaptable and

stable when facing environmental fluctuations (McCarty and

Ledesma-Amaro, 2019). The synergistic development of systems

and synthetic biology will provide both a thorough

understanding and a rational engineering of these complicated

consortia for novel applications (Song et al., 2014).

The advantages described above are inspiring more andmore

researchers to explore the ability of microbial consortia to

degrade complex compounds. In this paper, to provide a

reference for the construction of microbial consortia, those

that are currently used to degrade complex compounds are

summarized, and future research directions for their

construction are discussed.

Construction strategy of microbial
consortia for degradation

Artificial microbial consortia systems have been developed

and studied based on natural microbial consortia systems. There

are usually two principles for the design of artificial microbial

consortia systems: the top-down approach and the bottom-up

approach. The top-down approach uses carefully selected

environmental variables that force an existing microbiome

(naturally occurring or inoculated) through ecological

selection to perform the desired biological processes. This

requires us to conceptualize the microbial consortia as a

system model and determine the inputs and outputs of the

system, including physical and chemical conditions, known

abiotic and biological processes, environmental variables, and

how operations on the microbial consortia promote or inhibit the

biological processes being optimized (Lawson et al., 2019). The

most commonly used method is to artificially enrich and screen

functional microbial consortia. Although the conventional top-

down approach offers a framework and has been widely

successful for wastewater treatment and bioremediation, it

often ignores processes that depend on intricate interactions

between consortia members. Recent advances in synthetic

biology have enabled researchers to develop bottom-up

approaches and focus on engineering the microbiome’s

metabolic network and microbial interactions. The general

design process is to obtain the genomes of individual

members of the microbiome and then reconstruct the

metabolic networks. The individual populations’ reactions and

metabolites can be compartmentalized and metabolic fluxes

within and between populations can be simulated using

optimality principles (Orth et al., 2010). These models can

also simulate steady-state flux distributions over time and

space. Such bottom-up tools provide a platform for rationally

designing microbiomes with specific properties such as

distributed pathways, modular species interactions,

community resistance and resilience, and spatiotemporal

organization that optimize ecosystem function and stability.

Therefore, extending these designs to systems with non-model

organisms of tens to hundreds of different species will require

deeper insights into their metabolism and the principles

governing their interactions and higher-order behavior

(Lawson et al., 2019). Most microbial consortia that degrade

complex compounds are constructed with the top-down

approach.

When constructing microbial consortia to degrade complex

compounds, one of the important issues is to select suitable

chassis strains with suitable catalytic performance; whether they

can coexist with other strains also needs to be considered (Jawed

et al., 2019). Therefore, in the selection of chassis strains, strains

with low mutation rates, non-toxic by-products, and high

tolerance are generally selected. The next issue that needs to

be considered is the division of degradation pathways. Long

degradation pathways can be rationally divided into several

strains, and different degradation pathways can be responsible

for different strains (Lu et al., 2019). Although an artificial

microbial consortia system can reduce the metabolic burden

of cells, excessive segmentation of metabolic pathways will also

lead to confusion and reduce the efficiency of mass transfer

(Goers et al., 2014). In recent years, it has been discovered that

the ordered spatiotemporal distribution of strains can improve

the efficiency of microbial consortia to degrade complex

compounds. In this way, each strain in the microbial

consortia is provided with a suitable environment for

degradation and a spatial position corresponding to the time

sequence in the degradation pathway. Strain immobilization is a

commonly used spatio-temporal distribution application, and

plays an important role in promoting the biodegradation of

complex compounds. It can be implemented through an

ambient medium. Some researchers developed a special

hydrogel as a new carrier to be used in the immobilization of

artificial microbial consortia systems. This kind of hydrogel not

only does not affect the material exchange of bacteria but also has

a preservation effect on bacteria, which is conducive to the

stability of their function. Strains with different environmental

requirements in the microbial consortium can be preserved in

different hydrogels, and the mixing of hydrogels does not

change their individual properties (Johnston et al., 2020). The

design of the culture device is also helpful to the spatio-

temporal distribution and control of strains in an artificial

microbial consortia system. Microfluidic technology achieves

the fine regulation of different strains and improves the

control of the microbial consortia system (Wang C. et al.,

2019). Some researchers designed a ventilated biofilm reactor

based on the gradient distribution of oxygen in space to

achieve the reasonable coexistence and functional

complementarity of three kinds of bacteria, which
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effectively improved the efficiency of the microbial consortia

(Shahab et al., 2020).

During the degradation of complex compounds, the carbon

source required for the growth of microbial consortia is generally

a complex compound itself, but not all microorganisms in the

microbial consortia can utilize complex compounds as carbon

sources. A common solution is to construct sequential utilization

patterns of substrates and intermediates. Applying this model

can not only avoid substrate competition but also eliminate the

negative feedback inhibition caused by some by-products (Park

et al., 2020). However, this sequential utilization pattern does not

have well-defined material and energy flow paths like most

microbial consortia for synthesize compounds de novo. The

material and energy flow pathways in microbial consortia for

degrading complex compounds are more reticular in structure.

Material and energy are transferred repeatedly between strains

and may in any case be consumed rather than eventually pooling

in a product. This complex interaction network of material and

energy is beneficial for degrading complex compounds because it

can make the structure of the microbial consortium more stable

and more resistant to environmental fluctuations. In this

microbial consortium, the relationship between strains

becomes more complex as the number of strains increases.

For microbial consortiums with many strains, it might be

critical to consider higher-order interactions (HOIs) to ensure

stable coexistence and function (Mayfield and Stouffer, 2017).

For example, in a three-member consortium, a third population

could attenuate the negative interaction between two

antagonistic populations. The consortia can also be stable

even if the third species is antagonistic to the two species so

long as each population modulates the inhibitory interactions

between the remaining two members (Kelsic et al., 2015). Thus,

the presence of an additional population could synergize with an

existing community, resulting in a more stable consortium. The

HOIs can also extend to more population network topologies

(Grilli et al., 2017). Furthermore, the importance of HOIs

increases with the number of populations in the microbial

consortium (Friedman et al., 2017).

Cross-feeding and quorum sensing (QS) are two commonly

used artificial design approaches to maintain complex stability.

Symbiotic relationships in microbial consortia with few strains

are primarily based on single metabolite cross-feeding, such as an

amino acid (Harcombe et al., 2018). For example, amino acid

auxotrophies can create complex interdependencies between

microorganisms. These relationships promote stability and

robustness by allowing for metabolic redundancy among

community members (Embree et al., 2015). However, the

secretion of a single metabolite is often insufficient to support

the normal growth of all strains in a big microbial consortium,

limiting its robustness and stability. In a microbial consortium

degrading complex compounds with many strains, developing a

multiple-metabolite cross-feeding strategy is closer to the reality,

which is used to strengthen the correlation between microbial

entities. Central to this strategy is the selection of appropriate

metabolic branches for cross-feeding, which involve multiple

metabolites that are critical for cell growth and translocate across

cell membranes. Amino acid anabolism and energy metabolism can

often be selected to establish close cell–cell correlations resulting in a

very stable co-culture system (Li et al., 2022). The social and

gregarious behavior of single-celled organisms such as bacteria is

usually accomplished through intercellular communication, which

can occur throughQS. QS primarily regulates collective features that

involve energetically costly “public goods” and are most effective or

even only functional if performed by a microbial consortium.

Bacterial traits controlled by QS include genetic phenotypes,

biofilm formation, promoting or inhibiting function, and

virulence (Mashruwala et al., 2022; Pütz et al., 2022; Ramsay

et al., 2022). QS even can be a driver and target of other

functions (Striednig and Hilbi, 2022). However, one challenge in

incorporating more members within microbial consortia that

degrade complex compounds is that many QS systems are not

completely orthogonal, and one solution is to design a new QS

system. Recently, a sophisticated QS circuit with high dynamic

ranges, low leakiness, and the ability to simultaneously regulate

multiple sets of genes in 1 cell was designed and was used to

autonomously and temporally regulate three metabolic fluxes

involved in a pathway (Ge et al., 2022). This was a big step

forward but not sufficient to deal with the more complex

situation in microbial consortia. It was also discovered that QS

systems can be used for cell–cell communication between distant

populations (Luo X. et al., 2015). QS systems may play a key role in

microbial consortia that degrade complex compounds, just as they

now play an important role in synthetic microbial consortia with

fewer strains, but they must be studied further.

Current status of biodegradation of
complex compounds by microbial
consortia

Complex compounds are usually difficult to be efficiently

degraded by natural microorganisms due to the complexity of

their structures. Many researchers use microbial consortia to

degrade complex compounds, especially common environmental

pollutants. The current research progress on the degradation of

complex compounds by microbial consortia is shown in Table 1.

Common types of waste plastics such as polyethylene

terephthalate (PET), polyethylene (PE), polystyrene (PS), and

polyurethane (PU) have been degraded by microbial consortia.

The study of strain interaction in natural microbial consortia is a

necessary prerequisite for their construction. In fact, some

isolated natural microbial consortia have the ability to degrade

plastics. On this basis, researchers can add microorganisms to an

isolated microbial consortium according to the relationships of

the consortium to improve its efficiency, or build a simple

microbial consortium to better understand degradability, gene
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regulation, or enzymatic activities. For example, about 90% of

n-alkanes and aromatic hydrocarbons in petroleum

hydrocarbons can be degraded by reconstructed microbial

consortia (Bacosa and Inoue, 2015; Hu et al., 2020). Another

obvious improvement is the treatment of sewage microbial

consortia. Adding microalgae to activated sludge (a natural

microbial consortium) can improve the adsorption and

degradation efficiency of various compounds and even heavy

metals in sewage (Sepehri et al., 2020). Alternatively, a microbial

consortium can be constructed based on the interaction

relationship between microorganisms, whose substrates are

more targeted and generally can only degrade one or several

specific types of complex compounds. At the same time, fewer

strains are needed in the consortium, as each has its own clear

mission. In artificial microbial consortia, the degradation process

can be clearly represented and easily studied and even regulated.

A representative example is the artificial two-strain consortium

for CBP. One strain degrades complex cellulose into small

molecular compounds, and another strain uses those small

molecular compounds as substrates to synthesize the desired

products (Wen et al., 2020). For complex compounds, especially

pollutants in the environment (due to their refractory

degradation and the complexity of the environment), the

microbial consortium is one of the best choices for

bioremediation.

Degradation of petroleum hydrocarbons
by microbial consortia

Petroleum hydrocarbons are important energy resources and

raw materials for all walks of life. Petroleum hydrocarbon

TABLE 1 An overview of recent advances in the degradation of complex compounds by microbial consortia.

Substrate Achievement Co-culture strains References

Plastic PET the weight loss of PET film reached 23.2% in
7 days

Rhodococcus, Pseudomonas putida, and two metabolically
engineered Bacillus subtilis species

Qi et al. (2022)

PE demonstrated 81% ± 4% of weight reduction
for LDPE strips over a period of 120 days

Enterobacter sp. bengaluru-btdsce01, Enterobacter
sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-
btdsce03

Bardají et al.
(2020)

PS demonstrated 12.4% of weight reduction PS,
a weight loss of 23% of HIPS film in 30 days

Bacillus spp. and Pseudomonas spp. Ho et al. (2018)

PU 50.3% of proprietary aromatic PE-PU-A
copolymer was consumed in 25 days

Rhodobacterales, Rhizobiales, Burkholderiales,
Actinomycetales, Sphingobacteriales

Gaytán et al.
(2020)

Petroleum
hydrocarbons

n-alkane synergistic rate of biodegradation of diesel oil
was 85.54% ± 6.42%

Pseudomonas stutzeri, Dietzia sp. Hu et al. (2020)

Polycyclic aromatic
hydrocarbons

nearly completely degraded fluorene and
phenanthrene after 5 days

Sphingomonas, Pseudomonas, Sphingobium, Dokdonella
and Luteimonas

Bacosa and Inoue,
(2015)

Antibiotic 78.3% of Sulfonamide antibiotics had
degraded after 4 weeks

Firmicutes and Bacteroides, represented by Bacillus and
Flavobacterium

Liao et al. (2016b)

All sulfamethoxazole (5 mg/L) had degraded
in 3 h

nitrifying sludge (e.g., Nitrosomonas, Dokdonella,
Defluviicoccus, Pseudomonas, Zoogloea, Thauera, and
Pseudomonas)

Yan et al. (2022)

After 28-day incubation at 25°C, the
ciprofloxacin loss was nearly 100%

Classes Gammaproteobacteria, Bacteroidia,
Betaproteobacteria and Leucobacter

Liao et al. (2016a)

Azo dyes 98.2% decolorization A halophilic bacterial consortium from textile wastewater Shi et al. (2021)

All Orange II (250 mg/L) had been
decolorization

Vanrija humicola, Meyerozyma caribbica, Debaryomyces
hansenii, and Meyerozyma guilliermondii

Samir Ali et al.
(2022)

Wastewater NH4-N removal (100%) was observed within
7 days

Chlorella vulgaris and nitrifier-enriched-activated-sludge Sepehri et al.
(2020)

the removal efficiency of acetoacetanilide
(3200 mg/L) achieved 69.28 ± 0.42% within
14 days

Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and
Nitratireductor

Zhang et al.
(2023)

Lignocellulose produced 3.94 g/L butanol, which was five
times higher than the control

C. cellulovorans and C. beijerinckii Wen et al. (2020)

7.61 g/L of butanol was generated from
untreated corncob

Thermoanaerobacterium thermosaccharolyticum and
Clostridium acetobutylicum

Jiang et al. (2020)

0.44 g/g bioethanol production in biological
pretreatment of the lignocellulosic cotton
stalk

Saccharomyces cerevisiae YPH499 and Pachysolen
tannophilus 32691

Malik et al. (2021)
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pollutants, such as normal paraffin, cycloalkanes, and aromatics,

are recalcitrant compounds and are listed as priority pollutants

(Holliger et al., 1997; Costa et al., 2012; Sajna et al., 2015; Li et al.,

2020; Qian et al., 2021). They can usually be degraded in the

presence of several natural microorganisms, each of which can

decompose a specific set of molecules. Thus, microbial consortia

have advantages in crude oil bioremediation (Zanaroli et al.,

2010). Microbes in oil-contaminated areas adapt to the

environment, resulting in genetic mutations in offspring that

enable them to degrade petroleum hydrocarbon compounds

(McDonald et al., 2006; Varjani and Upasani, 2016). Many

novel species of microorganisms such as Anaerobaculum,

Desulfacinum infernum, Methanococcus thermolithotrophicus,

Thauera phenylacetica, and Geobacillus subterraneus have

been isolated from sites of contamination (Garcia and

Oliveira, 2013).

The top-down approach is often used to construct microbial

consortia for the degradation of petroleum hydrocarbons. The

degradation efficiency can be improved or the substrate range

can be broadened by adding new strains to natural microbial

consortia. The bioremediation capacity of microbial consortia in

oil-contaminated areas is often limited due to the poor

biodiversity of native microbial consortia, where the presence

of microorganisms with complementary substrate specificities to

degrade different hydrocarbons is lacking (Ron and Rosenberg,

2014). Microbial consortia with the potential to degrade

petroleum hydrocarbon compounds can be screened out from

oil-contaminated areas, before improving the degradation ability

or substrate extensiveness of the microbial consortia system by

artificial compounding or adding artificially engineered bacteria.

There are reports showing that microbial consortia are superior

to single bacteria in utilizing hydrocarbon contaminants in

petroleum crude oil as the sole carbon source (Varjani et al.,

2013). Such consortia show an increased degradation rate of

diesel and polycyclic aromatic hydrocarbons (PAHs) when

cultured under laboratory conditions (Varjani and Upasani,

2013). Ibrar and Zhang (2020) constructed a microbial

consortium containing Lysinibacillus, Paenibacillus, Gordonia,

and Cupriavidus spp. that could produce biosurfactants to

enhance the ability of other bacteria to degrade petroleum

hydrocarbons. Their results showed that the microbial

consortia could use common polycyclic aromatic hydrocarbon

pollutants (naphthalene and anthracene) as the sole carbon

source. Therefore, artificial microbial consortia systems are a

potential research direction to improve bioremediation efficiency

in oil-contaminated areas (Varjani et al., 2015).

The bottom-up approach can also be used to construct

microbial consortia based on the degradation pathway of

petroleum hydrocarbons, which has been elucidated in the

literature. As shown in Figure 2, the biodegradation of

petroleum hydrocarbon can be divided into several processes

(Li and Ding, 2021). In the first step, microorganisms enhance

the bioavailability of petroleum hydrocarbon pollutants by

chemotactic movements and secreting surfactants (Ahmad

et al., 2020). These surface-active materials increase the

surface area and bioavailability of hydrophobic and water-

insoluble substrates, thereby increasing the speed at which

petroleum hydrocarbons can approach microorganisms. Then,

the petroleum hydrocarbons enter the cell through the transport

process, mainly by free diffusion, passive transport, active

FIGURE 2
Biodegradation of petroleum hydrocarbons.
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transport, and endocytosis (Gu et al., 2016). Finally, the

petroleum hydrocarbon is degraded in the cell. The

degradation pathways of petroleum hydrocarbon compounds

mainly include aerobic degradation and anaerobic degradation.

Common pathways for the degradation of linear alkanes include

the initial degradation of alkanes and the oxidation of methyl

groups, leading to the formation of alcohols, followed by the

dehydrogenation of aldehydes to form their corresponding

carboxylic acids. Then, the fatty acids are metabolized by the

β-oxidation pathway (Abbasian et al., 2015). The degradation of

cycloalkanes and aromatic hydrocarbons is more difficult than

that of linear alkanes, as the former needs to be sequentially

opened by hydrolase or isomerase and then degraded through

degradation pathways that are different from those of linear

alkanes (Gupta et al., 2015; Ghosal et al., 2016; Dhar et al., 2020;

Li and Ding, 2021). Furthermore, each degradation pathway of

petroleum hydrocarbons is relatively long, which will bring

greater growth pressure to cells. Under the condition of

ensuring degradation efficiency, a single strain cannot

undertake all the functions of petroleum hydrocarbon

degradation and biosurfactant production at the same time.

Therefore, many studies are using microbial consortia to

degrade petroleum hydrocarbons, where different bacterial

species undertake different functions in the degradation

process. This can not only reduce the growth pressure of

individual cells but also improve the tolerance of bacterial

groups to harsh environments through cooperation between

different bacterial species, thereby making the entire

degradation system stable and robust.

The degradation efficiency of petroleum hydrocarbons can

be improved by modifying engineered bacteria according to the

degradation pathway. Such genetically modified engineered

microorganisms can degrade or assist in the degradation of

complex compounds. Luo Q. et al. (2015) constructed oil

biodegradation bacteria to promote the biodegradation of

diesel. The alkane hydroxylase (alkB) gene was introduced

into Escherichia coli, giving it the ability to degrade diesel fuel.

The diesel-induced expression of the AlkB protein increased the

diesel degradation rate from 31% to 50% after 24 h. Enhancing

surfactant production is conducive to improving the accessibility

of petroleum hydrocarbons to the strains, which is beneficial for

improving their degradation efficiency. Wu et al. (2018)

engineered B. subtilis 168 by integrating surfactant synthesis

activators, knocking out competing pathways, and enhancing

the supply of fatty acid precursors, resulting in a significant

increase in surfactant yield. Furthermore, different bacteria with

auxiliary functions and petroleum hydrocarbon-degrading

bacteria can be combined to form a consortium.

There is a way to improve the ability of the microbial

consortia which is by adjusting the interspecific relationship of

microbial consortia. Shuang et al. (2019) constructed a three-

bacteria system with, a significantly improved degradation

efficiency of phenanthrene obtained through the synergistic

effect between the bacterial species. Ghorbannezhad et al.

(2018) created a microbial consortium using eight fungi, three

yeasts, and four bacteria, and an oil degradation assay for various

combinations, including a bacterial mixed culture, a fungal

mixed culture, a fungal-bacterial mixed culture, and a

sequential fungal-bacterial mixed culture. The experimental

results showed that the repair effect of the synergistic

microbial consortia was generally significantly higher than

that of a single strain. The results demonstrate that

communication between different microorganisms in the

microbial consortia may improve the degradation ability of

petroleum hydrocarbons.

As one of the advantages of a microbial consortium, strains

with additional functions can be added without affecting the

degradation pathways of complex compounds. The most

economically valuable strategy is to add a microbial that can

use degradation products as carbon sources or substrates for the

biosynthesis of high-value products. In addition, the depletion of

degradation products favors the forward progression of the

degradation pathway. Thus, the synthesis of high-value

products increases the economic benefits of microbial

consortia for degrading complex compounds (Wang et al., 2022).

Degradation of plastics by microbial
consortia

A large amount of plastic is produced globally every day, but

only 21% of plastics are recycled or incinerated, and most of the

remainder is discarded or buried, greatly polluting the

environment (Law, 2017). Under natural conditions, the

whole process of plastic degradation requires a timeframe of

more than 50 years (Webb et al., 2013). Plastic waste can be

degraded through physical processes, chemical processes, or

biodegradation (Andrady, 2011). Microbial degradation has

been increasingly studied due to its safety, rapidity, and low

cost. Many plastics are biodegraded bymicrobial consortia rather

than individual strains, possibly because of the limited metabolic

capacity of individual microorganisms (Qi X. et al., 2021). Yu

et al. (2019) found that microorganisms in a consortium had

higher biodegradation efficiency than individual strains because

the potentially toxic intermediates can be removed by other

microorganisms present.

Many have investigated the degradation mechanism of

microbial consortia constructed by top-down approaches.

Vargas-Suárez et al. (2019) selected microbial consortia from

degraded foam blocks collected in landfills. They found that in

the presence of microbial consortia, the carbon utilization

efficiency of their strain was more efficient in degrading

multiple types of complex plastics than when it was

independent because of the interspecific interaction. To

elucidate the mechanism by which landfill microbial consortia

attack PU plastics, Gaytán et al. (2020) investigated the
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degradation of a microbial consortium selected from a municipal

landfill, which was able to disperse PU in water as the sole carbon

source of growth. The study showed that the degradable enzyme

gene of selected microbial consortia has great potential in the

direction of bioremediation. After understanding these

cooperative relationships, microbial consortia can be

constructed to achieve plastic degradation.

The bottom-up approach can be used to construct microbial

consortia based on the different degradation pathways of plastics,

whose steps are relatively clear. As shown in Figure 3, the whole

process of microbial degradation can be summarized into three

stages: biodeterioration, biofragmentation, and biodegradation

(Zhang et al., 2022). The biodeterioration stage refers to the

degradation of plastic polymer surfaces by biofilms that are

formed (Ru et al., 2020). In general, biofilms of microbial

consortia exhibit a better ability to degrade plastics than those

of single bacteria at this stage. Due to the natural hydrophobicity

of plastics, it is necessary to introduce hydrophilic functional

groups on the surface of plastics to facilitate the attachment of

microorganisms (Nauendorf et al., 2016). For example, the

biosurfactant-producing module in the microbial consortium

system for petroleum hydrocarbon degradation described

above can also be used in microbial consortia for plastic

degradation. Tribedi et al. (2015) demonstrated that biofilm-

promoting compounds, such as mineral oil and surfactants for

biofilm attachment, enhanced the biodegradation of plastics.

Fungi can also play an important role in the degradation of

plastics, as they can attach to plastic surfaces via their hyphae and

provides an attachable platform for other microorganisms

(Sánchez, 2020). Biofragmentation is a depolymerization step

that convert plastic polymers into smaller units by the action of

extracellular enzymes and free radicals (Jenkins et al., 2019).

Plastic-degrading enzymes are divided into two broad categories:

extracellular enzymes and intracellular enzymes. These different

groups of enzymes have been found to act similarly to microbial

laccases, peroxidases, lipases, esterases, and cutinases (Gan and

Zhang, 2019), and they are mainly involved in depolymerizing

the long carbon chains of plastic polymers to form mixtures of

oligomers, dimers, and monomers. Subsequently, these

monomers are then processed by different strains. Once these

plastic monomers are successfully transported into cells, they

undergo a series of enzymatic reactions that lead to their

complete degradation into oxidative metabolites (Ho et al.,

2017). The complete degradation of plastic requires the

participation of a variety of enzymes, and the enzymes

required for the degradation of different plastics are different.

Therefore, microbial consortia are a suitable choice to increase

the rate of plastics degradation, especially for a mixture of various

plastics.

For artificial microbial consortia constructed by bottom-up

approaches, the consortium can indirectly improve

biodegradation through metabolic cross-feeding or the

production of metabolites that induce co-metabolic

degradation (Hu et al., 2020). The degradation pathways of

plastics can be divided into different modules according to

key rate-limiting enzymes and intermediates, and each module

FIGURE 3
Biodegradation of plastics.
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can be assigned to different strains. These strains constitute the

initial microbial consortium. This approach has the advantage of

reducing the metabolic burden of each strain and increasing the

tolerance of the microbial community to harsh environments

through strain-to-strain interactions. Qi X. H. et al. (2021)

constructed a microbial consortium consisting of Rhodococcus,

Pseudomonas putida, and two engineered B. subtilis species for

the degradation of PET. The two engineered B. subtilis secrete

PET hydrolase and monohydroxyethyl terephthalate hydrolase

to achieve the initial degradation of plastics. Then, R. jostii and

Pseudomonas putidawere added to degrade terephthalic acid and

ethylene glycol. The final microbial consortia could completely

degrade 23.2% of a PET film at room temperature. Furthermore,

as a result of in-depth research on the degradation pathways of

synthetic plastics, it has also become possible to build a microbial

community degradation platform to degrade and convert

synthetic plastics into high-value products (Qi et al., 2022;

Sullivan et al., 2022).

Degradation of antibiotics and azo dyes by
microbial consortia

Antibiotics have been widely used as an effective class of

effective drugs, and their presence has been reported in sewage

treatment plant effluent, sewage treatment plant biosolids,

surface water, groundwater, and drinking water

(Barancheshme and Munir, 2018; Zhang et al., 2018). Such

antibiotic contamination has posed a major global threat.

Some scholars claim that future bioremediation work will

focus on enzymatic remediation, and biotechnology should be

prioritized over chemical treatment to minimize contamination

after treatment (Kumar et al., 2019). Microbial consortia showed

excellent degradability in studies on the biodegradation of

antibiotics. There are many types of antibiotics, and each

antibiotic biodegrades in different ways. Some antibiotics are

so complex that they require the cooperation of several strains to

be completely degraded. Thus, microbial consortia also have

advantages in degrading antibiotics.

Using the top-down approach to construct microbial

consortia for the degradation of antibiotics is common at

present. Firmicutes and Bacteroides, represented by Bacillus

and Flavobacterium, are the main bacteria in sulfa-degrading

consortia. These microbial consortia obviously can degrade

sulfonamides, and almost half of the antibiotics can be

degraded after 1 week, with an average degradation rate of

78.3% after 4 weeks (Liao et al., 2016b). Activated sludge is a

common research object in natural microbial consortia for the

degradation of antibiotics at present. Many researchers have used

bacterial liquids in the activated sludge of sewage treatment

plants to conduct experiments aiming to study the

degradation characteristics and influencing factors of

antibiotics degradation. For example, two microbial consortia

isolated from activated sludge were constructed to degrade

sulfamethoxazole (Larcher and Yargeau, 2011). And their

degradation rates increased after sulfamethoxazole was

pretreated with ozone (Larcher and Yargeau, 2013). Dominant

bacteria for antibiotic degradation were screened out from the

activated sludge, and a dominant microbial consortium was

constructed to degrade the drugs, which included

Microbacterium sp. BR1, Rhodococcus sp. BR2, Achromobacter

sp. BR3, Ralstonia sp. HR1, Ralstonia sp. HR2 and Tsukumurella

sp. HR3. The microbial consortia degraded sulfamethoxazole

with a mineralization rate of 58.0% ± 1.3% (Bouju et al., 2012).

Based on the above research results, a bottom-up approach

can be used to construct artificial microbial consortia. Su et al.

(2018) built a microbial consortium containing Streptomyces sp.

and Bacillus licheniformis with a high degradation capacity

toward β-cypermethrin, where 88.3% of β-cypermethrin could

be removed within 72 h. Further, the results of the artificial

microbial consortia have excellent stability and can be used in

environmental restoration. Wu et al. (2020) constructed a co-

culture system that could be applied to actual sewage for

bioremediation, which degraded more than 80% of the

tetracycline after 10 days.

Azo dyes are the most widely used synthetic dyes in textile

and garment printing and dyeing. In the production and use

processes of the dyes, about 10%–15% is discharged into the

environment without treatment, which seriously affects the

health of the contacts. These dyes have a strong solubilizing

ability in water and are difficult to be removed by traditional

approaches (Lellis et al., 2019). There are many approaches to

treating azo dye sewage, among whichmicrobial decolorization is

considered to be the most effective and environmentally friendly.

The first step in the bacterial degradation of azo dyes is to destroy

the azo bonds in the dye molecules. The decolorization of azo

dyes by fungi begins with hyphal adsorption, followed by the

secretion of extracellular enzymes to break chemical bonds. Azo

bond cleavage reactions can occur both extracellularly and

intracellularly, which is favorable for the cooperation of

microorganisms to degrade azo dyes. Most importantly, a

single microorganism will produce toxic aromatic amines

during the degradation of azo dyes, whereas microbial

consortia will not (Joshi et al., 2008). This is why such a

decolorization approach with microbial consortia is promoted.

However, the underlyingmolecular mechanism of synergistic

metabolism in the microbial consortia system has not been

revealed. Therefore, the current microbial consortia are mainly

constructed by the top-down approach. Shanmugam et al. (2017)

explored this mechanism through molecular biotechnology,

finding that their microbial consortia system could biodegrade

and mineralize azo dyes to a higher degree due to the synergistic

relation and division of labor in the consortia. Microbial

consortia have also shown excellent performance in practical

applications of azo dye degradation. For example, Selim et al.

(2021) isolated 21 fungi that could degrade azo dyes from
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contaminated soil. Textile sewage treated with microbial

consortia systems can be used to irrigate non-edible plants

and alleviate the global water shortage. Although the use of

azo dyes has been limited, their environmental impact is still

serious. Therefore, the ability of microbial consortia to degrade

azo dyes deserves further study and contributes to environmental

protection stategy.

Treatment of sewage by microbial
consortia

With the rapid development of modern industrialization and

economic globalization, the large amount of sewage discharged

by various industries is becoming a serious global environmental

problem (Kong et al., 2018; Sierra et al., 2018). Traditional

treatment systems are usually expensive, demand massive

amounts of energy, and are often still incapable of solving all

challenges associated with sewage. Using microbial consortia to

treat sewage is a relatively clean and efficient approach, especially

in the treatment of sewage eutrophication (Plöhn et al., 2021).

The microbial consortia often studied for wastewater treatment

are bacto-algae consortia developed from activated sludge.

Microalgae can switch autotrophic and heterotrophic

metabolism depending on the availability of carbon sources

and nutrients in the surrounding environment. Therefore,

microalgae are a popular candidate for building microbial

consortia in water (Raja et al., 2008; Kumar et al., 2010;

Subashchandrabose et al., 2013; Wijffels et al., 2013; Li et al.,

2016). Microbial consortia for wastewater treatment constructed

by the top-down approach have showed good stability, but with

less screening process than the bottom-up approach. Therefore,

they will not be discussed much here.

For microbial consortia constructed by the bottom-up

approach, the combination of microalgae and bacteria showed

a beneficial promoting effect. The oxygen and carbon dioxide in

algae and bacteria is beneficial for growth, where algae secretions

are the main carbon sources (carbohydrates, proteins, and fats)

for bacteria. The metabolites of bacteria can be used as promoters

for algae growth. In addition, the cell surface of microalgae can

provide a stable habitat for bacteria (Ramanan et al., 2016).

Bacteria break down organic matter into mineral forms and

secrete extracellular metabolites such as auxin and vitamin B12,

which are necessary for the growth of microalgae (Salim et al.,

2014). Thus, compared with individual microorganisms, those

combined with microalgae are more efficient in detoxifying

organic and inorganic pollutants and removing nutrients from

sewage (Subashchandrabose et al., 2013; Wijffels et al., 2013;

Xiong et al., 2017). One study experimentally compared the

arsenic accumulation and transformation of Chlorella vulgaris,

Aspergillus oryzae, and bacto-algae pellets under different

concentrations of arsenic and phosphorus. Among all the

treatments, the removal efficiency of the bacto-algae ball was

the highest and its ability to accumulate arsenic was the strongest

(Li B. et al., 2019). Similarly, constructed microbial consortia

have shown advantages in treating wastewater eutrophication.

Mujtaba et al. (2017) studied the simultaneous removal of

nutrients (ammonium and phosphate) and COD in a co-

culture system of Chlorella vulgaris and P. putida. They found

that the removal of nutrients and COD by the co-culture system

was higher than that of each individual culture system, indicating

that the nutrient absorption capacity of Pseudomonas putida was

improved in the consortia. Thus, the combined use of microalgae

andmicrobial consortia has broad prospects in sewage treatment.

Consolidated bioprocessing by microbial
consortia

Consolidated bioprocessing (CBP) is considered one of the

most potent and cost-effective ways to produce biofuels and

other high-value products. It can complete the production of

lignocellulose-degrading enzymes, the hydrolysis of

lignocellulose, and microbial fermentation in one

step. However, it is difficult to find a suitable microorganism

to produce all the enzymes required for the degradation of

lignocellulose and the production of high-value-added

products. A promising alternative is bioprocessing based on

microbial consortia. Most of the current approaches for

constructing CBP microbial consortia are bottom-up

approaches due to their remarkable controllability.

For the microbial consortia constructed by the bottom-up

approach, some experiments verified that microbial consortia

can indeed improve the efficiency of CBP. Zuroff et al. (2013)

found that consortia of C. phytofermentans and S. cerevisiae

produced ethanol from α-cellulose more efficiently than

monocultures. If an artificial microbial consortium is

constructed according to the division of labor among strains,

the efficiency of CBP could be greatly improved. For example, the

microbial consortia of Zymomonas mobilis and Candida

tropicalis can convert enzymatically hydrolyzed lignocellulosic

to ethanol with a yield reaching 97.7% (Patle and Lal, 2007). In

addition to the production of ethanol, CBP can be used to

produce other compounds such as halomethanes and lactic

acid. Bayer et al. (2009) used a microbial consortium of

engineered yeast and the cellulolytic bacterium Actinotalea

fermentans to produce halomethanes from raw switchgrass,

corn stover, bagasse, and poplar. Shahab et al. (2018)

assembled an artificial microbial consortium of the cellulolytic

enzyme-secreting aerobic fungus Trichoderma reesei with

facultative anaerobic lactic acid bacteria. The results showed

that the theoretically maximal lactic acid yield was obtained in

the experiment.

Many experimental results show that substrate degradation

efficiency is the rate-limiting step in CBP. Therefore, it is

necessary to increase the substrate degradation rate to further
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provide higher monosaccharide concentrations. The activity of

enzymes inmicrobial consortia may be additionally activated and

improved, thereby improving the efficiency of the CBP system

(Kuhar et al., 2015). To further investigate the factors affecting

the secretion of degradative enzymes in microbial consortia,

Puentes-Tellez and Salles, 2018 applied a reductive screening

approach based on molecular phenotype, identification, and

metabolic characterization to select the desired microbial

consortia. They found a minimally active microbial

consortium with efficient lignocellulose-degrading ability. The

degradation potential of the least active microbial consortia

reached 96.5%. The enhanced degradation efficiency of

lignocellulose by the mixed bacteria was more obvious in

another experiment, which established a microbial consortium

of Serratia sp. and Arthrobacter sp. to improve cellulose

degradation. The enzymatic activity was increased by 30%–

70% after co-cultivation. In addition, the degradation rate of

the microbial consortia was increased by more than 30%. In

another application direction, the use of microbial consortia with

ligninolytic degradation ability can significantly increase the

lignocellulose degradation rate in a fixed fluidized bed reactor

(An et al., 2022). When the problem of the degradation efficiency

of lignocellulose is solved, the construction of microbial consortia

becomes much clearer. When isolated cellulose-degrading

microbial consortia were co-cultured with Clostridium

acetobutyricum, the utilization rate of cellulose was greatly

improved, and a relatively high butanol product concentration

was obtained (Wang et al., 2015).

Conclusion

Most current research on complex-compound-degrading

microbial consortia has focused on native microbial consortia

isolated from the environment. However, we believe that

artificial microbial consortia are the direction of future

research. With the help of metabolic engineering and

synthetic biology, the construction of microbial consortia

systems shows a strong degradation potential, which serves

a new approach for the efficient utilization of complex

substrates and the remediation of the environment.

Although the mechanism of intercellular communication in

large microbial consortia is still unclear, and the regulatory

means are imperfect, it is predicted that with the deepening of

the relevant research, the strong metabolic capacity and

robustness of artificial microbial consortia will promote

their use in the field of degrading complex compounds.
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