243 research outputs found

    AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AtKinesin-13A is an internal-motor kinesin from Arabidopsis (<it>Arabidopsis thaliana</it>). Previous immunofluorescent results showed that AtKinesin-13A localized to Golgi stacks in plant cells. However, its precise localization and biological function in Golgi apparatus is unclear.</p> <p>Results</p> <p>In this paper, immunofluorescent labeling and confocal microscopic observation revealed that AtKinesin-13A was co-localized with Golgi stacks in Arabidopsis root tip cells. Immuno-electron microscopic observations indicated that AtKinesin-13A is primarily localized on Golgi-associated vesicles in Arabidopsis root-cap cells. By T-DNA insertion, the inactivation of the <it>AtKinesin-13A </it>gene (NM-112536) resulted in a sharp decrease of size and number of Golgi vesicles in root-cap peripheral cells. At the same time, these cells were vacuolated in comparison to the corresponding cells of the wild type.</p> <p>Conclusion</p> <p>These results suggest that AtKinesin-13A decorates Golgi-associated vesicles and may be involved in regulating the formation of Golgi vesicles in the root-cap peripheral cells in Arabidopsis.</p

    Growth of Thin Oxidation-Resistive Crystalline Si Nanostructures on Graphene

    Full text link
    We report the growth of Si nanostructures, either as thin films or nanoparticles, on graphene substrates. The Si nanostructures are shown to be single crystalline, air stable and oxidation resistive, as indicated by the observation of a single crystalline Si Raman mode at around 520 cm-1, a STM image of an ordered surface structure under ambient condition, and a Schottky junction with graphite. Ultra-thin silicon regions exhibit silicene-like behavior, including a Raman mode at around 550 cm-1, a triangular lattice structure in STM that has distinctly different lattice spacing from that of either graphene or thicker Si, and metallic conductivity of up to 500 times higher than that of graphite. This work suggests a bottom-up approach to forming a Si nanostructure array on a large scale patterned graphene substrate for fabricating nanoscale Si electronic devices

    Observation of the Josephson effect in Pb/(Ba,K)Fe2As2 single crystal junctions

    Full text link
    We have fabricated c-axis Josephson junctions on single crystals of (Ba,K)Fe2As2 by using Pb as the counter electrode in two geometries, planar and point contact. Junctions in both geometries show resistively shunted junction I-V curves below the Tc of the counter electrode. Microwave induced steps were observed in the I-V curves, and the critical currents are suppressed with an in-plane magnetic field in a manner consistent with the small junction limit. ICRN products of up to 0.3 mV have been observed in these junctions at 4.2 K. The observation of Josephson coupling along the c-axis between (Ba,K)Fe2As2 and a conventional superconductor suggests the existence of a s-wave superconducting order parameter in this class of iron pnictide superconductors.Comment: 16 pages and 3 figure

    Finite element method for one-dimensional rill erosion simulation on a curved slope

    Get PDF
    AbstractRill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model

    Mitochondrial COI sequences revealed shallow but significant divergences among Amphioctopus aegina (Octopoda, Octopodidae) populations in coastal waters of China

    Get PDF
    Amphioctopus aegina is an important fishery resource in the coastal waters of China. In the present study, the genetic diversity and population genetic structure among four populations of A. aegina throughout its distributional range in China were assessed using the mitochondrial cytochrome oxidase 1 (COI) sequences. The results revealed a generally low genetic diversity (Hd: 0.2842–0.6670; Pi: 0.0007–0.0015) in A. aegina populations. The neighbor-joining (NJ) phylogenetic tree and the haplotype networks, as well as the results of the molecular variance (AMOVA) analyses, indicated a shallow phylogeographic structure among the four populations. However, pairwise ΦST statistics and genetic distance analyses revealed significant (p<0.01) genetic differentiation among Qinzhou and the rest three populations of Zhanjiang, Huizhou, and Dongshan. The demographic history analyses indicated a population expansion in A. aegina, and the role of Leizhou peninsula isolation in shaping the population differentiation. These results would largely enhance our understanding of the genetic structure and hence promote the scientific management of A. aegina fishery resources in coastal waters of China

    Evidence of a universal and isotropic 2\Delta/kBTC ratio in 122-type iron pnictide superconductors over a wide doping range

    Get PDF
    We have systematically investigated the doping and the directional dependence of the gap structure in the 122-type iron pnictide superconductors by point contact Andreev reflection spectroscopy. The studies were performed on single crystals of Ba1-xKxFe2As2 (x = 0.29, 0.49, and 0.77) and SrFe1.74Co0.26As2 with a sharp tip of Pb or Au pressed along the c-axis or the ab-plane direction. The conductance spectra obtained on highly transparent contacts clearly show evidence of a robust superconducting gap. The normalized curves can be well described by the Blonder-Tinkham-Klapwijk model with a lifetime broadening. The determined gap value scales very well with the transition temperature, giving the 2{\Delta}/kBTC value of ~ 3.1. The results suggest the presence of a universal coupling behavior in this class of iron pnictides over a broad doping range and independent of the sign of the doping. Moreover, conductance spectra obtained on c-axis junctions and ab-plane junctions indicate that the observed gap is isotropic in these superconductors

    Cybernetic basis and system practice of remote sensing and spatial information science

    Get PDF
    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level

    Flatband Line States in Photonic Super-Honeycomb Lattices

    Full text link
    We establish experimentally a photonic super-honeycomb lattice (sHCL) by use of a cw-laser writing technique, and thereby demonstrate two distinct flatband line states that manifest as noncontractible-loop-states in an infinite flatband lattice. These localized states (straight and zigzag lines) observed in the sHCL with tailored boundaries cannot be obtained by superposition of conventional compact localized states because they represent a new topological entity in flatband systems. In fact, the zigzag-line states, unique to the sHCL, are in contradistinction with those previously observed in the Kagome and Lieb lattices. Their momentum-space spectrum emerges in the high-order Brillouin zone where the flat band touches the dispersive bands, revealing the characteristic of topologically protected bandcrossing. Our experimental results are corroborated by numerical simulations based on the coupled mode theory. This work may provide insight to Dirac like 2D materials beyond graphene
    corecore