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Abstract

Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion
models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models
with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in
many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill
erosion system were solved by the Galerkin finite element method and Visual Cþþ procedures. The simulated results are
compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results
indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore,
this study supplies a tool for further development of a dynamic soil erosion prediction model.
& 2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press. Production
and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Soil eroded by shallow water flows such as over land or in-rill flow is a critical component of the erosion system
on upland areas. The erosion processes of sediment detachment, transport, and deposition on hillslope areas are
complex and interactive. This has been of great interest to mathematical and computer modelers for upland erosion
modeling. A number of process-based dynamic models have been developed to better understand and model the
processes of runoff and soil erosion under different situations. The water erosion prediction project (WEPP) model
(Ascough, Baffaut, Nearing, & Liu, 1997; Flanagan & Nearing, 1995), European soil erosion (EuroSEM) model
(Morgan, Quinton, & Rickson, 1992), the areal nonpoints source watershed environment response simulation
(ANSWERS) model (Beasley, Huggins, & Monke, 1980), the Limburg soil erosion model (LISEM) (De Roo,
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Offermans, & Cremers, 1996), Griffith University Erosion System Template (GUEST) (Misra & Rose, 1996) are but
some examples. However, most of the models are either empirical or using Finite Difference Method (FDM) to solve
the mathematic equations. Model performances are either not efficient or are difficult to deal with complex boundary
conditions as associated with FDM. Furthermore, model parameters are often, if not impossible, difficult to directly
measure to present the actual physical properties (Lane, Shirley, & Singh, 1988).

Generally, soil erosion occurs on a three-dimensional (3-D) surface. But soil erosion behavior in a rill could to
some extent be well described with a one-dimensional (1-D) model. And the dynamic process of soil erosion along a
streamline of overland flow could be approximated with a one-dimensional model for the purpose of understanding
the basic mechanics behind the complicated phenomenon. The governing equations are a set of partial differential
equations involved in the hydrologic erosion processes. Numerical techniques do not need to make as many
assumptions as required for analytic solutions. The driving force that is the rainfall excess term can vary with time
and space (Lane et al., 1988; Sharda, Singh, Sastry, & Dhruvanarayana, 1994). Numerical methods such as the finite
difference method (FDM) and the finite element method (FEM) are employed to solve these equations. Finite
element techniques are generally recognized to have significant advantages over finite difference procedures for
irregularly shaped flow regions (Zienkiewics, Taylor, & Zhu, 2013) FEM is now widely used to solve a variety of
important problems in the field of soil science and groundwater hydrology. A lot of works has been accomplished in
early studies (Bralts & Segerlind, 1985; Guymon, 1972; Jayawardena & White, 1977; Ross, Contractor, &
Shanholtz, 1979; Taylor, Al-Mashidani, & Davis, 1974). Recently, Celia, Bouloutas, and Zarba (1990) stated that
numerical approximations based on different forms of the governing partial differential equation can lead to
significantly different results for unsaturated flow problems. A finite element model simulating runoff and soil
erosion from agricultural lands has been developed by Sharda and Nearing (1999). The sediment continuity equation
was solved employing a fully implicit scheme for time integration. The complete Yalin's equation (Yalin, 1977) was
used to simulate sediment transport capacity (Sharda et al., 1994; Sharda & Nearing, 1999; Sharda & Singh, 1994).
Jaber and Mohtar (2002) evaluate the stability and accuracy of finite element schemes for the one-dimensional
kinematic wave solution. They believed the lumped scheme considerably reduces oscillations without significant
reduction in the overall solution accuracy. A kinematic wave based distributed watershed model using the finite
element method, GIS and remotely sensed data has been reported by Venkata, Eldho, Rao, and Chithra (2008). This
model could simulate hydrographs reasonably well at the outlet of the watershed.

The purposes of this study are: to develop the mathematic models for one-dimensional rill soil erosion on hillslope,
including the hydrodynamics of shallow water flow along rills on the curved slopes, the soil detachment/deposition
and transportation; to develop numerical algorithms and the FEM formulations for simulating the spatial and
temporal processes; and, to validate the procedures by comparing the computed results with laboratory
experimental data.
2. The mathematical models

Basic assumptions for deriving the mathematic model for soil erosion from 1-D rill under the impact of water flow
are: (1) the water is very shallow, compared with the length; (2) velocity in the vertical direction is a uniformly
distributed flow profile and (3) Velocity is that of depth-averaged. Based on those assumptions the mathematic
models for rill erosion are given as the following.
2.1. Hydrodynamic models

The derivations of the continuity and momentum equations for overland and channel flow can be found in a
number of references (Ascough et al., 1997; Kibler & Woolhiser, 1970; Lei, Nearing, Haghighi, & Bralts, 1998;
Sharda & Nearing, 1999; Tsai & Yang, 2005). For mass conservation, the governing equation is written as

∂h
∂t

þ ∂ðuhÞ
∂x

¼ σ ð1Þ
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while momentum conservation equation given as

∂u
∂t

þu
∂u
∂x

þg
∂h
∂x

¼ � uσ

h
�g

Sxffiffiffiffiffiffiffiffiffiffiffiffi
1þS2x

q þSf x

0
B@

1
CAþFCnnx ð2Þ

where x(m) is the Cartesian coordinates, t(s) is the time, h(x, t) (m) is the depth of flow measured in the vertical
direction, u(x, t) (m s�1) is the depth-averaged velocity in the x-direction, σ(x, t) (m s�1) is the excessive rainfall
intensity, g (9.82 m t�2) is acceleration due to gravity, Sx (mm�1) is the geographic slope, Sfx (mm�1) is the
(hydraulic) friction slope, may be obtained as

Sf x ¼
u

C

� �2 1
h

ð3Þ

in which C is Chezy's C, a factor of flow resistance, given by

C ¼
ffiffiffiffiffi
8g
f

s
ð4Þ

f is the Darcy–Weisbach hydraulic frictional coefficient.

FC

-
is the contribution made by centrifugal accelerations, caused by the curved soil surface. This force can be

viewed as the force acting on the fluid by the soil body to force the fluid to flow along a curved streamline instead of
in a straight line, or viewed as the inertial force of the fluid, as the way gravity force acts on the fluid. It is normally
neglected.
2.2. Sediment transport model

According to the mass conservation of sedimentation and Frick's law, we have sediment transport model as (Lei
et al., 1998)

cσþh
∂c
∂t

þhu
∂c
∂x

¼ ∂
∂x

hDH
∂c
∂x

� �
þSss ð5Þ

where c (kg m�3) is sediment concentration in the flow.
DH (m2 s�1) is a hydraulic diffusive coefficient. Many different DH values were tried so as to help determine if DH

is significantly important in the rill erosion process and what value should be used (Lei et al., 1998). They found that
0.01–0.1 seems good enough in many situations. A value of 0.05 for DH was used in this study.

Sss(x,t) (kg m�2 s�1) is the sediment source/sink term. It is equal to rill detachment rate Dr (kg m�2 s�1) in the rill
erosion system. It has been computed following rill erosion prediction in the Water Erosion Prediction Project
(WEPP) model (Ascough et al., 1997):

Dr ¼ Krðτ�τcÞ 1� G

Tc

� �
ð6Þ

where Tc (kg s�1 m�1) in Eq. (6) is the sediment transport capacity. It is defined by the following equation (Lei,
Zhang, Zhao, & Tang, 2001):

Tc ¼ aþbSþcQ ð7Þ
where S (deg) is the slope and Q (l/min) is the flow rate. For silty–clay (loess) soil, a¼�0.3109, b¼0.01718 and
c¼0.1203. τ (N m�2) is the shear stress of the flowing water. According to the principles of hydrodynamics, shear
stress of water flow is equal to the gravitational component along the flow direction. Thus it can be expressed as
(Gilley, Elliot, Laflen, & Simanton, 1993)

τ¼ γsh¼ γs
Q

uw
ð8Þ
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where g (9820 N m�3) is specific gravity of water, s (sin(a)) is hydraulic slope, a(1) is slope in degrees; u (m s�1) is
averaged velocity, (N m�2) is the critical shear stress of soil. Kr (kg N�1 s�1) is the rill erodibility parameter.

A rational method for determining the soil erodibility and critical shear stress of rill erosion under concentrated
flow is advanced by Zhang, Lei, Pan, and Gao (2004). From his work, soil erodibility of a typical loess soil was
0.321170.0003 kg/N s, the critical shear stresses τc increase a little with the slope gradients, namely 3.19 N/m2,
3.94 N/m2, 4.14 N/m2, 4.38 N/m2, 4.62 N/m2 under 51, 101, 151, 201, 251, respectively.
3. Derivation of finite element equation

3.1. The system of linear elements

A one-dimensional linear element was used to formulate the FEM solution in this study. The typical linear element
and nodal structure used are shown in Fig. 1. In the method of weighted residuals, the continuous function □ is
replaced by a finite series approximation □. A standard linear interpolation scheme is used. The approximation
function □ may be written as

ψ � ϕ¼ NiϕiþNjϕj ¼ Ni;Nj

	 
 ϕi

ϕj

( )
ð9Þ

where □i and □i are known values of the interpolation function □ at the element vertices, Ni and Nj are interpolation
functions at node i and j, which depend upon the Cartesian coordinates (x,□) of the element vertices. Geometrically,
interpolation functions are represented mathematically as

½N� ¼ ½Ni;Nj:�
Ni ¼ Xj� x

Xj�Xi
¼ Xj� x

L

Nj ¼ x�Xi
Xj�Xi

¼ x�Xi
L

8>><
>>: ð10Þ

where Xi and Xj are the coordinates of the nodes, L¼ Xj�Xi, is the length of the element.
From Eq. (10), the derivative of Ni and Nj with respect to x (or s) is given as respectively

∂Ni

∂x
¼ � 1

L
ð11aÞ

∂Nj

∂x
¼ 1

L
ð11bÞ
Fig. 1. The 1-D linear element.
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The integral of polynomial function of shape functions over an element is determined by (Segerlind, 1976)Z
L
Ni

mðxÞNj
nðxÞdx¼ m!n!

ðmþnþ1Þ! L ð12Þ

where m and n are exponents of the interpolation functions Ni, Nj.
3.2. Galerkin method

The Galerkin method was used for solving the one-dimensional hydrodynamic and sediment continuity equations.
The detailed description and integral of finite element solution is given as follows.

Using operators, L1, L2, and L3 (as defined in the following) to Eqs. (1), (2) and (5) yields

L1 u; hð Þ ¼ ∂h
∂t

þ ∂ uhð Þ
∂x

�σ ¼ 0 ð13Þ
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þhu
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hDH
∂c
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� �
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For approximations, variable u, h, c, □, Sx, ð∂u=∂tÞ, ð∂h=∂tÞ and ð∂c=∂tÞ are given in the form of Eq. (9), which
produce some errors or residuals, denoted with R1, R2, and R3 as

R1 ¼ L1ðu; hÞ
R2 ¼ L2ðu; hÞ
R3 ¼ L3ðu; h; cÞ

8><
>: ð16Þ

Galerkin weighted residual method requires that the integrals of these residuals by each shape (or weight) function
be zero. The residual equation for element e takes the form as
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where L (m) refers to the length of the element, [Ne] and {Re} are the interpolation function and the nodal residuals
associated with element e, respectively.

Eq. (17) can be integrated in the form of an ordinary differential equation as follows:

Ce½ � ∂φ
∂t


 �
þ Ke½ � φ

� �¼ f e
� � ð18Þ

where {□} is {h},{u} or {c}, and [Ce], [Ke] and {fe} are the capacitance matrix, the stiffness matrix, and the force
vector in each equation and element, respectively

½Ce� ¼

R
L½Ne�T ½Ne�dlR
L½Ne�T ½Ne�dl
h
eR

L½Ne�T ½Ne�dl

8>><
>>: ð19Þ
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Herein, uex is the derivative of ue, Sef x and S
e
f x is determined by

Sef x ¼ ueS
e
f x ¼ ue

1

C
2

ue

h
e ð22Þ

S
e
f x ¼

1

C2

ue

h
e ð23Þ

where ue, h
e
, C

e
, σe, DH

e
, sx e and sf x e are the averages of the corresponding variables within the element e, uxe is the

averages of the derivative of the velocity within the element.
3.3. Numerical formulations

Using Eqs. (11a), (11b) and (12), the related integrals necessary for the FEM formulations are estimated as the
following:

Z
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Ne½ �T Ne½ �dx ¼

Z
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So Eqs.(19)–(21), can then be computed as follows:
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3.4. Approximation of the time derivatives

The system of equations expressed by Eq. (18) is a system of ordinary differential equations with respect to time.
The so called time marching integral method can be used to obtain the solutions for different time steps. For this
purpose, finite difference in time is adopted.

For a function □(t), the following holds:

dϕðξÞ
dt

¼ ϕðtþΔtÞ�ϕðtÞ
Δt

ð30Þ

ϕðξÞ ¼ ϕðtÞþðξ� tÞϕðtþΔtÞ
Δt

¼ ð1�θÞϕðtÞþθϕðtþΔtÞ ð31Þ

where t is time point, □ is some point on the interval t to tþΔt, Δt is the time step length.

θ¼ ξ� t

Δt
ð32Þ

Applying Eqs. (30)–(32) in Eq. (18) yields

Ce½ � ϕ
� �

tþΔt� ϕ
� �

t

Δt
þð1�θÞ Ke½ � ϕ

� �
tþθ Ke½ � ϕ

� �
tþΔt ¼ f e

� �
t ð33Þ

Rearranging the equation above yields

Ce½ �þθΔt Ke½ �ð Þ ϕ
� �

tþΔt ¼ Ce½ ��ð1�θÞΔt Ke½ �ð Þ ϕ
� �

tþΔt f e
� �

t ð34Þ
Giving initial conditions, combined with appropriate boundary conditions, Eq. (34) gives the desired solutions for

u, v and h at nodes and at different time steps. Eq. (34) can be written as

½Ae� ϕe
� �

tþΔt ¼ Bef g ð35Þ
where

Ae½ � ¼ Ce½ �þθΔt Ke½ �ð Þ
Bef g ¼ Ce½ ��ð1�θÞΔt Ke½ �ð Þ ϕ

� �
tþΔt f e

� �
t ð36Þ

And we have the system of equations for the element (e) as

A½ � ϕ
� �

tþΔt ¼ Bf g ð37Þ



Fig. 2. The experimental equipment and its layout.
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Assembling the local matrices ½Ae� and vectors Bef g (e¼1, 2,…, N) directly with the following equations, obtains
the matrix [A] and vector {B} needed in Eq. (37):

A½ � ¼
XN
e ¼ 1

Ae½ � ð38Þ

B½ � ¼
XN
e ¼ 1

Be½ � ð39Þ

In this way, we do not need to store the global matrices [C] and [K] before getting the matrix [A] and vector {B}
by multiplications with Eq. (36). So the storage saving would be expected by storing only one global matrix [A]
instead of storing two global matrices [C] and [K].

4. Model application and discussion

4.1. Experimental setup

4.1.1. Experiment for sediment concentration change with time
To validate the feasibility of the method advanced above, experiment data with silt-clay (loess soil) from Yao

(2006) were used. The experiments were conducted with a flume about 8 m long and 1 m wide which was sub-
divided into strips of 8 by 0.1 m to imitate erosion from rills. The treatments involved two slopes (151 and 251) and
two flow rates (2 and 4 L/min). The regulated water flow was introduced into the flume from the upper end. Three
replicates were adopted. The experiment lasted 100 s. Metal outlets for collecting samples of runoff and sediment
were connected at the lower end of each strip every 20 s.



Fig. 3. Flow chart.
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Experimental data from a previous study (Lei et al., 2001) with silt-clay (loess soil) was used to evaluate the impacts of
model parameters on rill erosion processes. The experiments were made with a flume of 8 m long and 1 m wide which
was divided into sections of 8� 0.1 m2 (Fig. 2). The experiments involved five slopes (51, 101, 151, 201, and 251), 9 slope
lengths (0.5, 1, 2, 3, 4, 5, 6, 7, 8 m), and three flow rates (2, 4, and 8 L/min). Numerical simulations were made on the
same conditions as the experiments for 151 and 251, 2 L/min and 4 L/min cases for model verification. Simulated
sediment concentrations along the rills were compared with those from the experiments.

4.2. Calculation procedures

The flow domain for the overland flow has been divided into N linear elements with nodes at x1, x2,…, xNþ1,
where x1¼0 and xNþ1¼L.

As shown in the flow chart (Fig. 3), in Block 1, the input includes rill information, initial conditions and boundary
conditions, widths, error limits for velocity, water depth and sediment concentration, soil information such as, rill
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erodibility, critical shear stress of soil, the rainfall duration etc. Block 2 simulates the period of the runoff and rain,
the velocity, water depth and sediment concentration, by implementing the following procedures:
�
 Calculate velocity and water depth in Eqs. (1) and (2);

�
 Determine the transport capacity, Eq. (7);

�
 Compute detachment rate by Eq. (6);

�
 Solve the sediment continuity equation for sediment concentration, Eq. (5);

�
 The convergence criteria in Block 2 are set as:

max
0r irNþ1

���φðkþ1Þ
i �φk

i

���
φi

rδ ð40Þ

where φ is h, u, or c; k is the time step; σ is the error limit.
4.3. Result and discussion

4.3.1. Comparison of simulated and experimental results for sediment concentration change with time
The samples of sediment concentration from experimentally measured and simulated results are graphically shown

in Fig. 4a–d. The simulated and experimental results do not change much during the measurement time durations
Fig. 4. Comparisons of simulated and experimental for sediment concentration change with time.
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because the sediment concentrations obtained at the end of the rill reached their transport capacities. Therefore they
were almost constant with time.

The observed and the numerically simulated results agreed very well, except for those at 251. There are two
reasons for this. One reason was the transport capacity estimated from the experiments was based on different slopes
and flow rates. According to previous experiment work, the predicted Transport Capacity is lower than the
experimental at 151 and higher at 251 (Lei et al., 2001). So the error was brought into this study. Since transport
capacity controls the maximum possible sediment concentration, the simulated is lower than the measured at 151 and
higher at 251. There is another reason that may need to be taken into account. The transport capacity function is
based on the soil that is not exactly at the same density as that used in Yao's experiments. The soil density of Yao's
experiments was higher than that in Zhang's experiments, which should have lowered erodability. Reasonably, the
measured results are all lower than Zhang's. Under these two effects above, the simulated data is close to
experimental data at 151, but lower at 251. In order to explain that this error does not come from the numerical
method and procedure, but from the transport capacity formula, a new function was fitted based on Yao's
experimental data with regressed coefficients as a¼�0.137, b¼0.006 and c¼0.108. Simulations were also made
with these newly determined data, as shown in Fig. 5a–d. The measured and predicted sediment concentrations
agreed qualitatively well. It indicated that the numerical algorithm and the FEM formulations for simulating the
erosion processes were correct.
Fig. 5. Modify transport capacity then comparisons of simulated and experimental date for sediment concentration change with time.



Fig. 6. Comparison of simulated and experimental for sediment concentration change with rill length.
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4.3.2. Comparison of simulated and experimental results for sediment concentration change with rill length
The simulated sediment concentrations along rills under different slope and flow rate conditions were compared

with Zhang's experimental data (Zhang, 2004) under the same conditions, as shown in Fig. 6a and b. The figures
indicate very good agreement of the simulated and experimental results. The sediment concentration increases with
rill length, but the increase rate diminished gradually. It increases until it reaches transport capacity. When constant
flow rate is introduced into the rill, water depth and velocity after some period of time both become constant and
uniform, and hence sediment transport capacity is also uniform and constant with time. The results indicate that both
the mathematical models and the numerical algorithms of the finite element method as well as the computational
procedure codes were correct.
5. Conclusions

A mathematical model based on the hydrodynamic and sediment transport theory was implemented in a computer model
for simulating rill erosion processes. The model was based on applying the Galerkin formulation of the finite element
method. The model simulates the velocity, depth and sediment concentration of the rill flow. Sediment concentration was
verified then validated by comparing its output results with the laboratory observations of the flume experimental system.
The results indicate that the model can serve as an effective tool in predicting the process of rill erosion.
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From the results, it can be concluded that the finite element method can be successfully used to predict rill erosion.
It was demonstrated that the one-dimensional linear finite element method produced excellent predictions for the test.
The general applicability of the current version of the model and the scope for future development are valuable issues
requiring considerable discussion.
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