79 research outputs found

    Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input

    Full text link
    Non-autoregressive translation (NAT) models, which remove the dependence on previous target tokens from the inputs of the decoder, achieve significantly inference speedup but at the cost of inferior accuracy compared to autoregressive translation (AT) models. Previous work shows that the quality of the inputs of the decoder is important and largely impacts the model accuracy. In this paper, we propose two methods to enhance the decoder inputs so as to improve NAT models. The first one directly leverages a phrase table generated by conventional SMT approaches to translate source tokens to target tokens, which are then fed into the decoder as inputs. The second one transforms source-side word embeddings to target-side word embeddings through sentence-level alignment and word-level adversary learning, and then feeds the transformed word embeddings into the decoder as inputs. Experimental results show our method largely outperforms the NAT baseline~\citep{gu2017non} by 5.115.11 BLEU scores on WMT14 English-German task and 4.724.72 BLEU scores on WMT16 English-Romanian task.Comment: AAAI 201

    Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation

    Full text link
    Non-autoregressive translation (NAT) models remove the dependence on previous target tokens and generate all target tokens in parallel, resulting in significant inference speedup but at the cost of inferior translation accuracy compared to autoregressive translation (AT) models. Considering that AT models have higher accuracy and are easier to train than NAT models, and both of them share the same model configurations, a natural idea to improve the accuracy of NAT models is to transfer a well-trained AT model to an NAT model through fine-tuning. However, since AT and NAT models differ greatly in training strategy, straightforward fine-tuning does not work well. In this work, we introduce curriculum learning into fine-tuning for NAT. Specifically, we design a curriculum in the fine-tuning process to progressively switch the training from autoregressive generation to non-autoregressive generation. Experiments on four benchmark translation datasets show that the proposed method achieves good improvement (more than 11 BLEU score) over previous NAT baselines in terms of translation accuracy, and greatly speed up (more than 1010 times) the inference process over AT baselines.Comment: AAAI 202

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Research status of monitoring and control technology of rapid coal loading system

    No full text
    Based on a simple introduction of rapid coal loading system, the paper emphatically discussed research status of monitoring technologies of its subsystems including coal storage silo, coal conveying system, weighing system, hydraulic system, vehicle location and identification system. It summarized application status of intelligent control technologies including fuzzy control, neural network control and expert control technology in the rapid coal loading system. Finally, it pointed out some important development tendencies of the monitoring and control technologies for the rapid coal loading system
    • …
    corecore