54 research outputs found

    Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard

    Get PDF
    GRAS transcription factors are known to play important roles in plant signal transduction and development. A comprehensive study was conducted to explore the GRAS family in the Brassica juncea genome. A total of 88 GRAS genes were identified which were categorized into nine groups according to the phylogenetic analysis. Gene structure analysis showed a high group-specificity, which corroborated the gene grouping results. The chromosome distribution and sequence analysis suggested that gene duplication events are vital for the expansion of GRAS genes in the B. juncea genome. The changes in evolution rates and amino acid properties among groups might be responsible for their functional divergence. Interaction networks and cis-regulatory elements were analyzed including DELLA and eight interaction proteins (including four GID1, two SLY1, and two PIF3 proteins) that are primarily involved in light and hormone signaling. To understand their regulatory role in growth and development, the expression profiles of BjuGRASs and interaction genes were examined based on transcriptome data and qRT-PCR, and selected genes (BjuGRAS3, 5, 7, 8, 10, BjuB006276, BjuB037910, and BjuA021658) had distinct temporal expression patterns during stem swelling, indicating that they possessed diverse regulatory functions during the developmental process. These results contribute to our understanding on the GRAS gene family and provide the basis for further investigations on the evolution and functional characterization of GRAS genes

    Using computed tomography angiography and computational fluid dynamics to study aortic coarctation in different arch morphologies

    Get PDF
    ObjectiveTo study the differences in computed tomography angiography (CTA) imaging of gothic arches, crenel arches, and romanesque arches in children with Aortic Coarctation (CoA), and to apply computational fluid dynamics (CFD) to study hemodynamic changes in CoA children with gothic arch aorta.MethodsThe case data and CTA data of children diagnosed with CoA (95 cases) in our hospital were retrospectively collected, and the morphology of the aortic arch in the children was defined as gothic arch (n = 27), crenel arch (n = 25) and romanesque arch (n = 43). The three groups were compared with D1/AOA, D2/AOA, D3/AOA, D4/AOA, D5/AOA, and AAO-DAO angle, TAO-DAO angle, and aortic arch height to width ratio (A/T). Computational fluid dynamics was applied to assess hemodynamic changes in children with gothic arches.ResultsThere were no significant differences between D1/AOA and D2/AOA among gothic arch, crenel arch, and romanesque arch (P > 0.05). The differences in D3/AOA, D4/AOA, and D5/AOA among the three groups were statistically significant (P < 0.05), D4/AOA, D5/AOA of the gothic arch group were smaller than the crenel arch group, and the D3/AOA and D5/AOA of the gothic arch group were smaller than the romanesque arch group (P < 0.05). The difference in AAO-DAO angle among the three groups was statistically significant (P < 0.05), and the AAO-DAO angle of gothic arch was smaller than that of romanesque arch and crenel arch group (P < 0.05). There was no significant difference in the TAO-DAO angle between the three groups (P > 0.05). The difference in A/T values among the three groups was statistically significant (P < 0.05), and the A/T values: gothic arch > romanesque arch > crenel arch (P < 0.05). The CFD calculation of children with gothic arch showed that the pressure drop between the distal stenosis and the descending aorta was 58 mmHg, and the flow rate at the isthmus and descending aorta was high and turbulent.ConclusionGothic aortic arch is common in CoA, it may put adverse effects on the development of the aortic isthmus and descending aorta, and its A/T value and AAO-DAO angle are high. CFD could assess hemodynamic changes in CoA

    Hexokinase1: A glucose sensor involved in drought stress response and sugar metabolism depending on its kinase activity in strawberry

    Get PDF
    Hexokinase1 (HXK1) is a bifunctional enzyme that plays indispensable roles in plant growth, nitrogen utilization, and stress resistance. However, information on the HXK family members of strawberries and their functions in glucose sensing and metabolic regulation is scarce. In the present study, four HXKs were firstly identified in the genome of Fragaria vesca and F. pentaphylla. The conserved domains of the HXK1s were confirmed, and a site-directed mutation (S177A) was introduced into the FpHXK1. FpHXK1, which shares the highest identity with the AtHXK1 was able to restore the glucose sensitivity and developmental defects of the Arabidopsis gin2-1 mutant, but not its kinase-activity-impaired mutant (FpHXK1S177A). The transcription of FpHXK1 was dramatically up-regulated under PEG-simulated drought stress conditions. The inhibition of the HXK kinase activity delayed the strawberry plant’s responses to drought stress. Transient overexpression of the FpHXK1 and its kinase-impaired mutant differentially affected the level of glucose, sucrose, anthocyanins, and total phenols in strawberry fruits. All these results indicated that the FpHXK1, acting as a glucose sensor, was involved in drought stress response and sugar metabolism depending on its kinase activity

    An effective method for establishing a regeneration and genetic transformation system for Actinidia arguta

    Get PDF
    The all-red A. arguta (Actinidia arguta) is an anthocyanin-rich and excellent hardy fruit. Many studies have focused on the green-fleshed A. arguta, and fewer studies have been conducted on the all-red A. arguta. Here we reported a regeneration and Agrobacterium-mediated transformation protocol by using leaves of all-red A. arguta as explants. Aseptic seedling leaves of A. arguta were used as callus-inducing materials. MS medium supplemented with 0.3 mg·L-1 2,4-D and 1.0 mg·L-1 BA was the optimal medium for callus induction of leaves, and medium supplemented with 3 mg·L-1 tZ and 0.5 mg·L-1 IAA was optimal for adventitious shoot regeneration. The best proliferation medium for adventitious buds was MS + 1.0 mg·L-1 BA + 0.3 mg·L-1 NAA. The best rooting medium was 1/2MS + 0.7 mg·L-1 IBA with a 100% rooting rate. For the red flesh hardy kiwi variety ‘Purpurna Saduwa’ (A. arguta var. purpurea), leaves are receptors for Agrobacterium (EHA105)-mediated transformation. The orthogonal experiment was used for the optimization of each genetic transformation parameter and the genetic transformation of the leaves was 21% under optimal conditions. Our study provides technical parameters for applying genetic resources and molecular breeding of kiwifruit with red flesh

    FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit

    Get PDF
    Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway

    Larval development of the barnacle Ibla cumingi

    No full text

    Membrane Effect of Geogrid Reinforcement for Low Highway Piled Embankment under Moving Vehicle Loads

    No full text
    In this paper, the membrane effect of geogrid reinforcement was investigated based on numerical simulation to understand the serviceability and deformation of highway piled embankments under moving vehicle loads. The membrane effect of geogrid reinforcement in low embankments (i.e., the ratio of embankment height to pile spacing is less than 1.5) was clearly emphasized. It has been found that the maximum settlement of geogrid occurs in the central area between the piles, and the maximum tension was concentrated at the corner of the pile cap. Due to the attenuation of the soil arching effect under moving dynamic loads and the punching mechanism, the settlement and tension of the geogrid increased considerably by approximately 35% and 23% compared to those under static loads. A parametric study was also achieved, and the results presented that the geogrid reinforcement tension increased by increasing the pile spacing, embankment height and geogrid stiffness, vehicle wheel load and vehicle velocity. It was also found that the reinforcement tension was most sensitive to the pile spacing among all the parameters considered in this paper, whose magnitude increased by approximately 104% as the pile spacing increased from 2.0 m to 2.5 m under dynamic loads

    Membrane Effect of Geogrid Reinforcement for Low Highway Piled Embankment under Moving Vehicle Loads

    No full text
    In this paper, the membrane effect of geogrid reinforcement was investigated based on numerical simulation to understand the serviceability and deformation of highway piled embankments under moving vehicle loads. The membrane effect of geogrid reinforcement in low embankments (i.e., the ratio of embankment height to pile spacing is less than 1.5) was clearly emphasized. It has been found that the maximum settlement of geogrid occurs in the central area between the piles, and the maximum tension was concentrated at the corner of the pile cap. Due to the attenuation of the soil arching effect under moving dynamic loads and the punching mechanism, the settlement and tension of the geogrid increased considerably by approximately 35% and 23% compared to those under static loads. A parametric study was also achieved, and the results presented that the geogrid reinforcement tension increased by increasing the pile spacing, embankment height and geogrid stiffness, vehicle wheel load and vehicle velocity. It was also found that the reinforcement tension was most sensitive to the pile spacing among all the parameters considered in this paper, whose magnitude increased by approximately 104% as the pile spacing increased from 2.0 m to 2.5 m under dynamic loads

    Genetic richness affects trait variation but not community productivity in a tree diversity experiment

    Full text link
    Biodiversity–ecosystem functioning experiments found that productivity generally increases with species richness, but less is known about effects of within‐species genetic richness and potential interactions between the two. While functional differences between species can explain species richness effects, empirical evidence regarding functional differences between genotypes within species and potential consequences for productivity is largely lacking. We therefore measured within‐ and among‐species variation in functional traits and growth and determined stand‐level tree biomass in a large forest experiment factorially manipulating species and genetic richness in subtropical China. Within‐species variation across genetic seed families, in addition to variation across species, explained a substantial amount of trait variation. Furthermore, trait responses to species and genetic richness varied significantly within and between species. Multivariate trait variation was larger among individuals from species mixtures than those from species monocultures, but similar among individuals from genetically diverse vs genetically uniform monocultures. Correspondingly, species but not genetic richness had a positive effect on stand‐level tree biomass. We argue that identifying functional diversity within and among species in forest communities is necessary to separate effects of species and genetic diversity on tree growth and community productivity
    corecore