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FaGAPC2/FaPKc2.2 and FaPEPCK
reveal differential citric acid
metabolism regulation in late
development of strawberry fruit
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Xiaorong Wang2, Haoru Tang2 and Ya Luo1*
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Citric acid is the primary organic acid that affects the taste of strawberry fruit.

Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle).

However, little is known about the regulatory mechanisms of glycolytic genes on

citric acid metabolism in strawberry fruits. In this study, the citric acid content of

strawberry fruit displayed a trend of rising and decreasing from the initial red

stage to the full red stage and then dark red stage. Thus, a difference in citric acid

metabolic regulation was suspected during strawberry fruit development. In

addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate

dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase

(FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the

accumulation of citric acid, leading to a range of maturity stages from partial red

to full red stage. The combined transcriptome andmetabolome analysis revealed

that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the

expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely

FaPEPCK) but enhanced the content of glutamine and aspartic acid.

Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were

inhibited, but the activities of glutamine synthase (GS) were increased in

FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification

demonstrated that overexpression of FaPEPCK can promote strawberry fruit

ripening, resulting in a range of maturity stage from full red to dark red stage,

while the citric acid synthase (CS) activities and citric acid content were

significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2

and FaPEPCK perform an important role in reducing citric acid content in

strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS

degradat ion pathway and FaPEPCK mainly by inhib i t ing the CS

synthesis pathway.

KEYWORDS

cytosolic glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase,
phosphoenolpyruvate carboxykinase, strawberry fruit, citric acid
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1 Introduction

Cultivated strawberry (Fragaria × ananassa Duch.) is the

second largest category of berry fruit grown worldwide, whose

quality can be evaluated by several characteristics, including fruit

size, color, flavor, texture, nutrients and bioactive compounds (He

et al., 2018). Among them, sugar-acid content and ratio have a

significant bearing on strawberry flavor and are major

considerations in consumers’ purchasing decisions. The

perception of taste by consumers is more sensitive to organic

acids than sugar. Meanwhile, low acidity is a critical economic

trait that has always been selected during fruit tree domestication

and artificial breeding (Zheng et al., 2021). Therefore, researches on

organic acid metabolism regulation during fruit development and

ripening would greatly contribute to the improvement of

fruit quality.

Organic acids, including citric acid, malic acid, quinic acid and

oxalic acid, are ubiquitous in most plants (Igamberdiev and

Eprintsev, 2016). At present, most studies on organic acid

metabolism in fruits focus on citrus, apple, peach, plum, grape

and tomato (Rhodes et al., 1967; Echeverria et al., 1989; Famiani

et al., 2005), but few on strawberry. As a non-climacteric model

plant for studying fruit development and ripening (Li et al., 2011),

citric acid accounts for 49-75% of the total organic acid content in

strawberry fruit (Fait et al., 2008). Synthesis and degradation

determine the amount of citric acid in fruits (Etienne et al., 2013).

Citric acid is produced by the condensation of acetyl-coenzyme A

(acetyl-CoA) and oxaloacetic acid, with citrate synthase (CS)

catalyzing, whereas the degradation of citric acid happens outside

the vacuole (Trejo-Tellez et al., 2008). Currently, there are three

main pathways involved in the degradation of citric acid, including

the ATP-citrate lyase (ACL) pathway, glutamine synthase (GS)

pathway and gamma-aminobutyric acid (GABA) pathway. In the

ACL pathway, citrate is directly cleaved into oxaloacetate (OAA)

and acetyl-CoA. In the GS pathway, citrate is successively degraded

into isocitrate, a-ketoglutarate, glutamate and glutamine by the

sequential action of aconitase (ACO), isocitrate dehydrogenase

(IDH), glutamate dehydrogenase (GDH) and GS (Etienne et al.,

2013). The GABA shunt pathway converts glutamate to GABA

through glutamate decarboxylase (GAD). GABA enters the

mitochondria and undergoes a process of transamination and

oxidation catalyzed by gamma-aminobutyrate aminotransferase

(GABAT) and succinic semialdehyde dehydrogenase (SSADH) to

produce succinic semialdehyde (SSA) and succinic acid (Fait et al.,

2008). Previously, a series of genes associated with citrate

metabolism have been reported, such as CS, participating in

citrate synthesis in watermelon fruit (Umer et al., 2020), tonoplast

dicarboxylate transporter (AtTDT) and P-ATPases1/5 (PH1/PH5),

involving in citrate transport (Hurth et al., 2005; Strazzer et al.,

2019), citrate lyase subunit a 1 (ACLa1) (Li et al., 2020),

phosphoenolpyruvate carboxykinase (PEPCK1) (Liu et al., 2021),

aconitase3 (Aco3) and some regulators (NAC, WRKY, DREB, ERF,

etc.), contributing to citrus citrate degradation (Nishawy et al., 2015;

Li et al., 2017; Li et al., 2020). However, the roles of upstream

glycolytic genes, which provide substrates for the TCA cycle, are not

well understood.
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Cytosolic glyceraldehyde-3- phosphate dehydrogenase (GAPC)

and pyruvate kinase (PK) are the key enzymes of the glycolytic

pathway. GAPC catalyzes the oxidative phosphorylation of

glyceraldehyde-3-phosphate (G3P) to 1, 3-biphosphoglycerate (1,

3-BPG), using NAD+ as a coenzyme specifically (Plaxton, 1996).

Besides, PK catalyzes phosphoenolpyruvate and adenosine

diphosphate (ADP) to pyruvate and adenosine triphosphate

(ATP). And then, pyruvate shuttles to mitochondria to enter the

TCA cycle (Podestá and Plaxton, 1992). GAPCs and PKs play

important roles in plant growth, development, energy metabolism,

and responses to abiotic stress (Andre et al., 2007; Guo et al., 2014;

Kim et al., 2020; Li et al., 2022). Recently, both FaGAPC2 and

FaPKc2.2 are thought to be negative regulators to participate in the

regulation of strawberry fruit ripening and organic acids (Luo et al.,

2020; Chen et al., 2022). Besides, PKcs also participate in the

metabolism of malic acid and citric acid in peach and sour

pummelo (Zheng et al., 2021; Chen et al., 2022). PEPCK is a

critical regulatory enzyme of the gluconeogenic pathway,

catalyzing oxaloacetic acid convert to phosphoenolpyruvate

(PEP). Gluconeogenesis is associated with the release of

metabolites of the TCA cycle from the vacuole. For example,

reducing malic acid concentration inhibits PEPCK activities and

reduces PEP concentration, thus facilitating the transition from

gluconeogenesis to glycolysis (Walker et al., 2021). PEPCK may be

involved in citric acid degradation in citrus, as well as the

conversion of glycolic acid in apple and kumquat (Liu et al., 2021;

Wei et al., 2021; Zhang et al., 2022). Despite FaGAPC2/FaPKc2.2

and FaPEPCK have similar functions in regulating the

accumulation of organic acids, the exact mechanisms underlying

metabolic regulation remain elusive in strawberry fruit.

Citrate is the predominant organic acid in strawberry fruit, and

the content of total soluble solids (TSS) is not high, ranging from

7%-16%. The sour-sweet flavor is the taste sensation that most

consumers experience (Leonardou et al., 2021). Moreover, the

organic acid concentration of strawberry fruit underwent a

marked increase when the seasons changed from winter to spring

in China, severely affecting strawberry fruit quality (Urün et al.,

2021). Therefore, it is urgent to breed low-acid strawberry varieties

for production. Based on this, the roles of FaGAPC2/FaPKc2.2 and

FaPEPCK in regulating citric acid metabolism in strawberry fruit

were investigated. This study not only provides valuable genetic

resources for strawberry quality improvement, but also offers new

insights for further research in this field.
2 Materials and methods

2.1 Plant materials

Strawberry (Fragaria × ananassa cv. ‘Benihoppe’) plants were

grown in a plastic greenhouse in the field (from September 2020 to

March 2021) at the Teaching and Research Base of Sichuan

Agricultural University in Chongzhou City, Sichuan Province,

China. Fruit developmental stages were defined as small green

(SG), large green (LG), white (W), initial red (IR), partial red

(PR), full red (FR) and dark red (DR) stage based on days post-
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anthesis (DPA) and the color of receptacles (Jia et al., 2016). The

fruits of the de-greening stage were collected and used for

Agrobacterium injection. Fruit samples (including seeds) were

taken only from the middle part of the fruit, and the medullary

part was removed (Ikegaya et al., 2019).
2.2 RNA extraction, cDNA synthesis
and PCR amplification

The total RNA of fruits was extracted using a plant specific RNA

extraction kit (TianGen, China). The first-strand cDNA was

synthesized using the Revert Aid H Minus Reverse Transcriptase

(Thermo Fisher, US) with random primers. All PCR amplifications

were conducted on a PT100 thermal cycler (Bio-Rad, US).

Reactions of 20 mL were set up by a combination of 1 mL of

cDNA template, 1 mL of forward and reverse gene-specific primer,

and 10 mL of PrimeSTAR Max Premix (TaKaRa Bio, Dalian,

China). A total of 34 PCR cycles of reactions were employed,

consisting of one step of 98°C 3 min, 98°C 10s, 60°C 15 s, 72°C

1 min, and a last extension step of 72°C for 5 min. PCR amplicons

were detected through electrophoresis in a 1% agarose gel.
2.3 Transient overexpression of FaGAPC2/
FaPKc2.2 and FaPEPCK in strawberry fruits

The full-length CDS sequences of FaGAPC2/FaPKc2.2 and

FaPEPCK were amplified with the primer pair OE-FaGAPC2-F/

OE-FaPKc2.2-F, OE-FaPEPCK-F and OE-FaGAPC2-R/OE-

FaPKc2.2-R, OE-FaPEPCK-R (Supplementary Table S1) and

inserted into a vector pCambia1301. The pCambia1301 empty

expression vector was used as the control. The sequencing

confirmed construct and the control were introduced into

strawberry fruits at the de-greening stage via agrobacterium-

mediated genetic transformation (Lin et al., 2018). Five days post

infiltration (5dpi), the fruits were collected to determine ripening-

related parameters. The same samples were also used for

transcriptome and metabolomic assays. The experiment was

repeated three times with seven fruits per treatment.
2.4 Determinantion of strawberry
fruit quality

Fruit color was measured using a chroma meter (CR-400,

Konica Minolta, Japan). The results were presented as L*, a* and

b* values. Fruit firmness and TSS were measured using a hardness

tester (FR-5105, LUTRON, China) and a pocket refractometer

(PAL-1, Atago, Japan), respectively. The titratable acid (TA)

content was determined by an acid-base titration method with 0.1

M NaOH (Kafkas et al., 2005). The results were expressed as citric

acid % (w/v). The sucrose, fructose, glucose, citric acid and malic

acid contents were detected using the HPLC method (Shen et al.,

2007; Aksǐć et al., 2019). Sugar determination: 0.5 g strawberry fruit

was extracted with 2 mL Ultra purified water, and detected by an
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Athena NH2-RP column using Agilent HPLC system (eluent

program: 75% acetonitrile 10 min) subsequently. Organic acid

determination: 0.5 g strawberry fruit was extracted with 4 mL

0.2% phosphoric acid water, and detected by an Athena C18-WP

column using Agilent HPLC system (eluent program: 3% methanol

and 97% phosphoric acid water (0.2%) phosphoric acid water,10

min) subsequently. The content of sugar and organic acid was

quantified by comparing them with the corresponding external

standards. All HPLC-grade standards were purchased from Sigma

(USA). Experiments were independently repeated three times.
2.5 Determination of anthocyanin content

The pH differential method (Lee et al., 2005) was used to

measure the total anthocyanin content. Approximately 1.5 g

strawberry fruit was extracted with 15 mL pre-cooled extraction

buffer (1% HCl-ethanol) on ice for 4 h, and then centrifuged

(8000 × g, 4°C) for 25 min. The supernatant was measured for

total anthocyanin content. The main anthocyanin pelargonidin-3-

glucoside in strawberry fruits was determined by the HPLC method

(Yonekura and Tamura, 2019). Anthocyanins were extracted using

1%HCl in a methanol solution, which was subsequently detected by

a Silgreen ODS C18 column using an Agilent HPLC system with a

DAD detector at 510 nm. The anthocyanins, listed as follows, were

detected using a linear gradient eluent program: 5% formic acid in

water as eluent A and methanol as eluent B, 100-0% A in B was used

for 20 min, followed by 100% B for 5 min. A 10-µL sample was

injected, the flow rate was set to 1 mL/min. The concentration of

anthocyanins was quantified by comparing with the corresponding

external standards. All HPLC-grade standards were purchased from

Sigma (USA). Experiments were independently repeated

three times.
2.6 Determination of enzyme activity, ABA
and IAA content

The GS, GAD, PEPCK, CS, ACL, IDH enzyme activity, ABA

and IAA content was measured by enzyme-linked immunoassay

(ELISA) kit (MLBIO, Shanghai, China). Strawberry fruit (1.0 g) was

extracted with 10 mL 80% ethanol (v/v) at 4°C for 1 h and 10 mL

phosphate buffer (PBS), respectively. The PBS-extracted

supernatant and 80% ethanol-extracted supernatant were used for

the determination of enzyme activity and ABA/IAA content,

respectively. Add 50 mL of supernatant diluted 5 times and 100

mL of enzyme standard reagent to the enzyme standard plate,

incubate for 1 h at 37 °C. Repeat washing the solution for 5

times, pat dry and add color developer A (50 mL) and B (50 mL),
mix well, and then develop color at 37 °C for 15 min. Add 50 mL of

termination solution and measure absorbance at 450 nm within

15 min. Add 50 mL of each standard at different concentrations to

the standard wells, and add no sample and enzyme standard reagent

to the blank control wells. The rest of the operation is the same. The

experiment was repeated three times.
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2.7 Metabolomic analysis

The fruit samples were ground and extracted with 1.0 mL 70%

aqueous methanol. After centrifugation at 10,000 × g for 10 min, the

extract was filtered and quantified at Novogene (Beijing, China).

UHPLC-MS/MS analyses were performed using a Vanquish UHPLC

system coupled with an Orbitrap Q ExactiveTMHF-X mass

spectrometer (Thermo Fisher, US). Samples were injected onto a

Hypesil Gold column (100 × 2.1 mm, 1.9 mm) using a 17 min linear

gradient at a flow rate of 0.2 mL/min. Eluent A (0.1% FA in Water)

and eluent B (methanol) were used in the positive polarity mode. The

eluents for the negative polarity mode were eluent A (5 mM

ammonium acetate, pH 9.0) and eluent B (methanol). The solvent

gradient was set as follows: 2% B, 1.5 min; 2-100% B, 12.0 min; 100%

B, 14.0 min; 100-2% B, 14.1 min; 2% B, 17 min. Q ExactiveTMHF-X

mass spectrometer was operated in positive/negative polarity mode

with a spray voltage of 3.2 kV, the capillary temperature of 320°C,

sheath gas flow rate of 40 arb and aux gas flow rate of 10 arb. The raw

data was processed using the Compound Discoverer 3.1 (CD3.1)

system. Differential metabolites with a percentage of coefficient of

variation (%CV) below 30%, variable importance in the projection

(VIP) >1.0, fold changes (FC) >1.5 and the adjusted p < 0.05 were

included in the statistical analyses. Six independent replications were

included for each sample.
2.8 Transcriptome sequencing and analysis

Total RNA isolated from three groups of fruits in which

FaGAPC2/FaPKc2.2 was efficiently overexpressed was used for

RNA-seq library construction. The ones from fruits infiltrated with

the empty vector were used as control. Library constructions were

done following the standard protocol of Illumina Next®UltraTM

RNA Library Prep Kit (NEB, USA). A total of six (three replication

for each treatment) libraries were clustered and sequenced (150 bp,

pair-end) by Novogene (Beijing, China) on a Hiseq-2500 platform.

FASTQ reads derived from CASAVA base calling were screened

for low-quality (Q < 20) bases and adaptors by utilization trim-

galore (v0.6.6). The cleaned reads were mapped onto the strawberry

genome and quantified using the accurate Fanse3 mapping pipeline

(Zhang et al., 2021) with parameters: -L160, -E5, -S14, -B. The

edgeR (v3.34.1) (Robinson et al., 2010) R package was employed to

detect the differentially expressed transcripts with the raw reads

count using the exact negative binomial test. Only those transcripts

with signifficant changes (log 2 transformed fold change (log2FC)

greater than 0.5 or less than -0.5) and the adjusted p-value ≤ 0.05

were considered as differentially expressed. KEGG pathway and GO

enrichment analysis were conducted using the R package cluster

Profiler (v4.2.0) (Wu et al., 2021).
2.9 Real-time quantitative PCR

A real-time quantitative PCR assay was performed to measure

the expression level of the selected genes in strawberry fruit samples.
Frontiers in Plant Science 04
A 20 mL reaction system was established, including 1 mL of cDNA

template, 1 mL of gene-specific primer pairs (Supplementary Table

S2), 7 mL of dd H2O and 10 mL of TB Green Premix Ex Taq II

(TaKaRa, Dalian, China). 40 circles of three-step PCR reactions

were carried out with a denaturation step at 94°C for 3 min, 94°C

for 30 s, an annealing step at 58°C for 10 s and an extension at 72°C

for 10 s. The FaActin2 gene (LOC101313255) served as the internal

control. The relative mRNA expression level of the target genes was

calculated by using the 2−△△Ct method. Three biological and three

technological replications were done for all the RT-qPCR reactions.
2.10 Statistical analysis

Data analyses were conducted with IBM SPSS Statistics software

(Version 25.0). Results were expressed as mean ± SD. p-value≤ 0.05

was considered a statistically significant difference (LSD’s multiple

range test).
3 Results

3.1 Changes in pelargonidin 3-glucoside
and citric acid content during strawberry
fruit ripening

The ripening process of strawberry fruit was accompanied by

continuous accumulation of anthocyanin and dynamic changes of

organic acid content. To elucidate their characteristics in strawberry

fruit development, the content of citric acid and pelargonidin-3-

glucoside was determined. The results showed that pelargonidin-3-

glucoside started to accumulate from the initial red stage, reaching a

maximal level of 244.96 mg/g at the dark red stage, 1.63-fold higher

than that at the full red stage (Figures 1A, B). Citric acid content

showed a trend of decreasing first and then increasing from white to

initial red stage, and decling-rising- decling from initial red to dark

red stage (Figure 1C). The lower citric acid content occurred at the

white red and dark red stage of fruit development, respectively.

These results indicated that the stage from full red to dark red stage

is the key developmental stage for the massive accumulation of

anthocyanin and rapid degradation of citric acid in strawberry fruit.
3.2 Overexpression of FaGAPC2 and
FaPKc2.2 affect strawberry fruit ripening
and quality

To identify the role of FaGAPC2 and FaPKc2.2 in the

ripening and quality of strawberry fruits, we transiently

overexpressed FaGAPC2 and FaPKc2.2 in strawberry fruits by an

Agrobacterium-mediated transformation method, respectively. Five

days after infiltration, it was shown that overexpression of

FaGAPC2 and FaPKc2.2 inhibited the coloring and a* value of

the strawberry fruit (Figure 2A, Supplementary Figure S1A, B), and
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the higher expression level of FaGAPC2 and FaPKc2.2 were

detected in FaGAPC2/FaPKc2.2-overexpressed fruits, compared

with that of the control (Figure 2B). Meanwhile, the lower total

anthocyanin (Figure 2C) and pelargonidin-3-glucoside (Figure 2D)

content in FaGAPC2/FaPKc2.2-overexpressed fruits echoed that of

the fruit appearance (Figure 2A). The firmness of overexpressed

fruits was higher than that of the control (Figure 2E). Furthermore,

a significant decrease of the TSS content was observed in the

FaGAPC2-overexpressed fruit, but no significant change of the

glucose, fructose and sucrose content were observed (Figures 2F,

G). The titratable acid (Figure 2H) and citric acid contents

(Figure 2I) in FaGAPC2/FaPKc2.2-overexpressed fruit were all

reduced. The changes in malic acid content were less consistent

with that of citric acid, which was 1.62-fold in the FaGAPC2-

overexpressed fruit and 0.98-fold in the FaPKc2.2-overexpressed

fruit compared with that of the control (Figure 2I).

To further verify whether FaGAPC2 and FaPKc2.2 affect the

major hormones involved in strawberry fruit development and

ripening, the content of IAA and ABA was also measured. The

result of ABA concentration in the FaGAPC2/FaPKc2.2-

overexpressed fruit was 1.07-fold and 1.15-fold lower than that of

the control, respectively (Figure 2J). However, the content of IAA

did not show significant difference between the overexpressed fruit

and the control (Figure 2J). Taken together, these results

demonstrated that FaGAPC2 and FaPKc2.2 could regulate

strawberry fruit ripening as a negative regulator and affect the

formation of strawberry fruit quality.
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3.3 Metabolomic profiling of the FaGAPC2
and FaPKc2.2 overexpressed fruit

To have an overview of the metabolic characteristics of

FaGAPC2/FaPKc2.2-overexpressed fruits, ultra-high-performance

liquid chromatography-tandem mass spectrometry (UHPLC-MS/

MS) was employed for metabolite analysis. To test the differences in

metabolic between profiles groups and sample replicates within the

group, we carried out principal component analysis (PCA)

including 18 samples (Figure 3). The two-dimensional score plot

of PCA showed that the 6 biological replicates of each treatment

were clustered together (Figures 3A, B), confirming the

reproducibility of the data. The Venn diagrams showed that 301

and 150 differential metabolites were identified in FaGAPC2/

FaPKc2.2-overexpressed fruit, respectively (|FC| > 1.5, adjusted P

< 0.05). Meanwhile, FaGAPC2 vs. CK and FaPKc2.2 vs. CK shared

112 common differential metabolites (Figure 3C). Among the 112

differential metabolites, only 35 metabolites could be annotated to

the KEGG pathway (Figure 3D), which were enriched in 25 KEGG

pathways (Supplementary Figure S2A, B). Next, 11 metabolites

were downregulated and 101 were upregulated (Supplementary

Table 3). These compounds were classified into 21 different

functional classes (Figure 3E). A total of 30 metabolites were

detected in the phospholipids group, 10 and 12 metabolites were

detected in terpenoids and nucleosides, nucleotides and derivatives,

respectively. Notably, there were 1 and 3 downregulated metabolites

were detected in anthocyanin and organic acids groups,
B C

A

FIGURE 1

The content of pelargonidin 3-glucoside and citric acid at different developmental stages of strawberry fruit. Strawberry fruits at seven
developmental stages (A), pelargonidin 3-glucoside content (B), citric acid content (C). SG, small green; LG, large green; W, white; IR, initial red; PR,
partial red; FR, full red; DR, dark red.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1138865
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1138865
respectively. Furthermore, another 21 compounds which could not

be assigned to any classes of the groups above were also

observed (Figure 3E).
3.4 Transcriptomic changes in the
FaGAPC2 and FaPKc2.2
overexpressed fruits

To further understand the genetic basis of metabolite changes,

transcriptome analysis was performed between the control and the

FaGAPC2/FaPKc2.2-overexpressed fruit. A total of 1258 and 709

differentially expressed genes (DEGs) were detected in the

FaGAPC2 and FaPKc2.2 overexpressed fruit, respectively
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(Figure 4A). In the comparison between FaGAPC2 and CK, there

were 820 upregulated DEGs and 438 downregulated DEGs

(Figure 4B). In the comparison between FaPKc2.2 and CK, a total

of 365 DEGs were upregulated and 344 DEGs were downregulated

(Figure 4B). In the comparison between FaGAPC2 and FaPKc2.2,

there were 529 DEGs, of which 415 genes were upregulated and 114

genes were repressed (Figures 4A, B). Gene ontology terms (GO)

enrichment analysis for these DEGs uncovered ten significantly

enriched biological function terms. The most significantly enriched

GO term between the FaGAPC2 and CK groups, and between the

FaGAPC2 and FaPKc2.2 groups were both “response to chitin”

(Figures 4C, D). Furthermore, defense responses to insect and

ethylene-activated signaling pathway terms were also significantly

enriched between the two groups.
B C D

E F G

H I J

A

FIGURE 2

Overexpression of the FaGAPC2 and FaPKc2.2 genes in strawberry fruits. The appearance of the controlled and overexpressed fruits five days after
agrobacterium infiltration (A), the relative expression level of FaGAPC2 and FaPKc2.2 (B), anthocyanin contents (C), pelargonidin 3-glucoside
contents (D), fruit firmness (E), total soluble solids content (F), glucose, fructose and sucrose content (G), titratable acidity content (H), citric acid and
malic acid content (I), ABA and IAA contents (J). CK, control fruit; OE-FaGAPC2, FaGAPC2-overexpressed fruit; OEFaPKc2.2, FaPKc2.2 overexpressed
fruit. Below is the same.
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3.5 Glycolysis and citric acid metabolism
pathway gene-metabolite joint analysis

Given that FaGAPC2/FaPKc2.2 overexpression can reduce the

citric acid content of strawberry fruit, glycolysis and citric acid

metabolism pathways were identified through the transcriptome

and metabolome data. There were 3 common differential

metabolites and 1 DEG mapped to the glycolysis and citric acid

metabolism pathway (Supplementary Figure S3). Compared with the

control, overexpression of FaGAPC2 and FaPKc2.2 significantly

decreased the relative contents of citric acid (1.5- and 1.03-fold)
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and a-ketoglutarate (1.55- and 1.05-fold), but increased the

relative levels of glutamine (0.3- and 0.58-fold) and asparagines

(0.84- and 0.74-fold), respectively (Supplementary Figure S3).

Meanwhile, only FaPEPCK (FxaC_1g21491) involved in mediating

the decarboxylation of oxaloacetate (OAA) to generate

phosphoenolpyruvate (PEP) was detected as common DEG in

Glycolysis-Krebs cycle pathway, which was downregulated 2.2- and

3.2-fold in FaGAPC2/FaPKc2.2-overexpressed fruit compared to that

of the control, respectively (Supplementary Figure S3). These results

suggested that FaPEPCK may be involved in citric acid degradation

regulated by FaGAPC2 and FaPKc2.2 in strawberry fruit.
B

C D

E

A

FIGURE 3

Analysis of differential metabolites in FaGAPC2/FaPKc2.2-overexpressed fruits. Principal component analysis (PCA) score plots of strawberry fruit
samples in negative ion modes (A), PCA score plots of strawberry fruit samples in positive ion modes (B), the Venn diagram analysis (C), the KEGG
annotation of common differential metabolites (D), classification and the number of all the identified differential metabolites in the FaGAPC2/
FaPKc2.2-overexpressed fruits (E). The upregulated metabolites were labeled in orange-red and the downregulated were labeled in blue.
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3.6 Enzymatic activity related to citric acid
metabolism in FaGAPC2 and FaPKc2.2-
overexpressed strawberry fruit

To further investigate how FaGAPC2 and FaPKc2.2

downregulate citric acid levels in strawberry fruit, we measured

the citric acid metabolism-related enzymatic activities. The results

showed that overexpression of FaGAPC2/FaPKc2.2 increased GS

enzymatic activity by 1.2- and 1.3-fold (Figure 5A), decreased

GAD enzymatic activity by 0.64- and 0.66-fold (Figure 5B), and

PEPCK enzymatic activity by 0.78- and 0.76-fold (Figure 5C),

respectively. However, no significant effect was observed on CS,

ACL and IDH enzymatic activities (Figures 5D–F). Therefore, it is

most likely that overexpression of FaGAPC2/FaPKc2.2 may inhibit

the enzymatic activity of FaPEPCK and FaGAD, promoting the

degradation of citric acid in strawberry fruit.
3.7 Overexpression of FaPEPCK promotes
citric acid degradation in strawberry fruit

To further identify the role of FaPEPCK in citric acid

metabolism, FaPEPCK was transiently overexpressed in

strawberry fruit. The results showed that overexpression of

FaPEPCK promoted fruit coloring and a* value with higher
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expression in the FaPEPCK-overexpressed fruit (Figures 6A, B,

Supplementary Figure S1C, D). Meanwhile, higher anthocyanin

(Figure 6C) and pelargonidin 3-glucoside content (Figure 6D) were

also observed. There was no significant difference in firmness, TSS,

and the amount of glucose, fructose, sucrose and titratable acid

between the FaPEPCK-overexpressed fruit and controlled fruit

(Figures 6E–H). Of note, the citric acid content in the FaPEPCK-

overexpressed fruit was significantly reduced (Figure 6I). This

experiment confirmed that FaPEPCK plays an important role in

the degradation of citric acid in strawberry fruit.
3.8 Enzymatic activity related to citric acid
metabolism in FaPEPCK-overexpressed
strawberry fruit

To understand how FaPEPCK regulates citric acid degradation,

we measured the activities of citrate-metabolism-related enzymes,

including CS, ACL, IDH, GAD, GS and PEPCK. Compared with the

control, overexpression of FaPEPCK significantly reduced CS and

ACL activities (Figures 7A, B), but did not affect the activities of

PEPCK, IDH, GS and GAD (Figures 7C–F). These results

demonstrated that overexpression of FaPEPCK might mainly

reduce the accumulation of citric acid by inhibiting the enzymatic

activities of CS and ACL.
FIGURE 4

Analysis of DEGs in FaGAPC2/FaPKc2.2-overexpressed fruits. Total number of DEGs in FaGAPC2/FaPKc2.2-overexpressed fruits (A), number of up-
regulated and down-regulated DEGs in FaGAPC2/FaPKc2.2-overexpressed fruits (B), GO enrichment analysis of DEGs between the FaGAPC2-
overexpressed fruits and CK fruits (C), GO enrichment analysis of DEGs between the FaPKc2.2-overexpressed fruits and CK fruits (D).
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4 Discussion

4.1 FaGAPC2/FaPKc2.2 may promote citric
acid degradation in strawberry fruit by
enhancing glutamine metabolism pathway

Recently, FaGAPC2 and FaPKc2.2 have been found to

participate in the regulation of strawberry fruit ripening and

quality formation (Luo et al., 2020; Chen et al., 2022). However,

the specific regulatory mechanism has not been well characterized.

Previous study revealed that the glycolysis pathway and TCA cycle

were upregulated during the late ripening of citrus fruits (Lin et al.,

2015). The increase in PK expression promoted the metabolic flux

towards organic acid metabolism through sucrose metabolism (Lin

et al., 2015). In this study, overexpression of FaGAPC2 and

FaPKc2.2 reduced the content of sucrose and fructose in

strawberry fruits (Figure 2), and the expression level and

enzymatic activity of FaPEPCK were also inhibited (Figure 5C).

Inactivation of PEPCK can promote glycolysis, reducing citric acid

content in citrus fruit (Wu et al., 2021). In addition, PEPCK

inactivation reduced the respiration rate, resulting in more

oxaloacetate converted to asparagine, which was reintroduced

into the TCA cycle via a-ketoglutarate and glutamate, promoting

citric acid degradation in tomato fruit (Osorio et al., 2013). These

results are similar to ours, where levels of citric acid and a-
ketoglutarate decreased, along with an increase in asparagine

content in FaGAPC2/FaPKc2.2-overexpressed fruits. Since

asparagine is the major nitrogenous compound in plum, apricot,
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cherry and peach fruits (Famiani et al., 2020), FaGAPC2 and

FaPKc2.2 are also considered to help the conversion of carbon

and nitrogen compounds in strawberry fruits. Furthermore, both

GS and GAD have been suggested as positive regulators of citrate

degradation during citrus fruit ripening (Chen et al., 2013; Lin et al.,

2015; Ma, 2020). In this study, an increased GS activity and a

decrease in GAD activity were observed in FaGAPC2/FaPKc2.2-

overexpressed fruits (Figure 6A), suggesting that FaGAPC2 and

FaPKc2.2 overexpression decreased the content of citric acid mainly

by inhibiting the expression of FaPEPCK and activating the

GS pathway.
4.2 FaPEPCK participates in regulating the
reduction of citric acid in strawberry fruit

At present, the role of PEPCK in citric acid metabolism in fruits

is still controversial. PEPCK is a potential gene for citric acid

degradation in citrus (Liu et al., 2021), blueberry, raspberry,

currant and peach fruits (Famiani et al., 2005; Famiani et al.,

2016). However, Famiani et al. (2012) suggested that PEPCK is

not a critical gene for citric acid degradation in plum fruit. In this

study, the increase of citric acid content in FaPEPCK-overexpressed

fruits did not turn out to be as anticipated, but a significant

reduction (Figure 6I). The result was similar to that of Osorio

et al. (2013) in tomato fruit. Meanwhile, the content of glucose,

fructose and sucrose in FaPEPCK-overexpressed fruits increased

(Figure 6G). Since the maturation process of most fleshy fruits is
B C

D E F

A

FIGURE 5

Enzymatic activity involved in the citric acid metabolism in FaGAPC2/FaPKc2.2- overexpressed fruit. GS activity (A), GAD activity (B), PEPCK activity
(C), CS activity (D), ACL activity (E), IDH activity (F). GS, glutamine synthetase; GAD, glutamic acid decarboxylase; PEPCK, phosphoenolpyruvate
carboxykinase; CS, citrate synthase; ACL, ATP-citrate lyase; IDH, isocitrate dehydrogenase.
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accompanied by an increase in sugar and a decrease in organic acid,

some researchers proposed that organic acid to sugar conversion

occurs during late fruit development (Liu et al., 2021), which has

already been confirmed in apple and kumquat fruits (Wei et al.,

2021; Zhang et al., 2022). Normally, the criteria for judging

strawberry fruit maturity mainly depends on the color

appearance. The anthocyanin concentration accumulates rapidly

during the transition from the full red to dark red stage (Zhang

et al., 2011), which is also the crucial stage of citric acid degradation

(Liu et al., 2022). According to the pelargonidin 3-glucoside

content, the maturation state of control and FaPEPCK-

overexpressed fruits was between the full red to dark red stage,

and the maturity of FaPEPCK-overexpressed fruit was closer to the

dark red stage. Therefore, the lower citric acid content in FaPEPCK-

overexpressed fruits is also reasonable. Previously correlations of CS

enzymatic activity with organic acid content have been confirmed

in strawberries (Liu et al., 2021). A recent study found that the

transcription factor FaMYB5 enhanced the expression level of

FaCS2, resulting in high citric acid content (Liu et al., 2021).
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However, ACL can be either positively or negatively regulate

citric acid content in citrus (Hu et al., 2015). In this study, the

decreased activities of CS and ACL suggested that citric acid

accumulation in FaPEPCK-overexpressed fruits may be regulated

by the CS synthesis pathway than the ACL degradation pathway

during the late developmental stage of strawberry fruit.
4.3 Citric acid metabolism appears to be
differentially regulated during strawberry
fruit development

Multiple-input/output pathways of citric acid metabolism result

in the complexity of citric acid-related research. To date, the

generally accepted view is that citric acid content is closely

associated with its biosynthesis and breakdown. The content of

organic acid in strawberry fruit can be influenced by genotype, fruit

development stage, growth condition and exogenous substances

(Gündüz and Ozdemir, 2014; Enomoto et al., 2018; Ikegaya et al.,
B C

D E F
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A

FIGURE 6

Overexpression of the FaPEPCK in strawberry fruits. The appearance of the treated fruits five days after agrobacterium infiltration (A), the relative
expression level of FaPEPCK (B), anthocyanin content (C), pelargonidin 3-glucoside content (D), fruit firmness (E), total soluble solids content (TSS)
(F), glucose, fructose and sucrose content (G), titratable acidity content (H), citric acid content (I). CK, the controlled fruit; OE-FaPEPCK, FaPEPCK-
overexpressed fruit.
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FIGURE 7

Enzymatic activity involved in the citric acid metabolism in FaPEPCK-overexpressed fruits. CS activity (A), ACL activity (B), PEPCK activity (C), IDH
activity (D), GS activity (E), GAD activity (F). CS, Citrate synthase; ACL, ATP-citrate lyase; PEPCK, phosphoenolpyruvate carboxykinase; IDH, isocitrate
dehydrogenase; GS, Glutamine synthetase; GAD, glutamic acid decarboxylase.
FIGURE 8

Potential mechanism of citric acid degradation during strawberry fruit development. Red and green letters or lines represent upregulated and
downregulated metabolites or enzymatic activities. The yellow-orange triangle represents the change in citric acid content during strawberry fruit
development. The red and orange circle represent the content of pelargonidin 3-glucoside and citric acid in strawberry fruit, respectively. CS,
citrate synthase; ACL, ATP-citrate lyase activity; GS, glutamine synthetase; GAD, glutamic acid decarboxylase; Glu, Glutamate; Gln, glutamine; Asp,
asparagine; GABA, gamma-aminobutyricacid; PR, partial red; FR, full red stage; DR, dark red stage.
rg

https://doi.org/10.3389/fpls.2023.1138865
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1138865
2019; Tas ̧ et al., 2021; Urün et al., 2021). Here, we found that citric

acid levels in strawberry fruit displayed fluctuation. During the

transition of strawberry fruits from full red to dark red stage, the

citric acid content showed a rising and then falling trend

(Figure 1C). Normally, the strawberry is harvested when it has

reached 70% to full redness, which contains relatively higher citric

acid content and doesn’t possess the best flavor. Therefore, reducing

the citric acid content is necessary for improving the flavor of

strawberry fruit before it reaches the full red stage. In this study,

FaGAPC2 and FaPKc2.2 reduce the citric acid content of strawberry

fruit mainly through the GS degradation pathway in the partial red

to full red stage, and FaPEPCK mainly by inhibiting the CS

synthesis pathway in the full red to dark red stage, suggesting that

citric acid metabolism appears to be differentially regulated during

the late stage of strawberry fruit development, and multiple

pathways and genes may be involved in this process, including

glycolysis (FaGAPC2, FaPKc2.2), gluconeogenesis (FaPEPCK),

citrate synthase (FaCS) and citrate degradation (FaGAD, FaGS)

(Figure 8). At the same time, the GS degradation pathway may be a

major factor in determining the flavor of strawberry fruit before it

reaches full red stage.
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