4,958 research outputs found

    A Tree-Like Model for Brain Growth and Structure

    Get PDF

    Coil-globule transition of a single semiflexible chain in slitlike confinement

    Get PDF
    Single polymer chains undergo a phase transition from coiled conformations to globular conformations as the effective attraction between monomers becomes strong enough. In this work, we investigated the coil-globule transition of a semiflexible chain confined between two parallel plates, i.e. a slit, using the lattice model and Pruned-enriched Rosenbluth method (PERM) algorithm. We find that as the slit height decreases, the critical attraction for the coil-globule transition changes non-monotonically due to the competition of the confinement free energies of the coiled and globular states. In wide (narrow) slits, the coiled state experiences more (less) confinement free energy, and hence the transition becomes easier (more difficult). In addition, we find that the transition becomes less sharp with the decreasing slit height. Here, the sharpness refers to the sensitivity of thermodynamic quantities when varying the attraction around the critical value. The relevant experiments can be performed for DNA condensation in microfluidic devices.Singapore-MIT Alliance for Research and Technology CenterNational Science Foundation (U.S.) (CBET-1335938

    AEGIS: Extinction and Star Formation Tracers from Line Emission

    Get PDF
    Strong nebular emission lines are a sensitive probe of star formation and extinction in galaxies, and the [O II] line detects star forming populations out to z>1. However, star formation rates from emission lines depend on calibration of extinction and the [O II]/H-alpha line ratio, and separating star formation from AGN emission. We use calibrated line luminosities from the DEEP2 survey and Palomar K magnitudes to show that the behavior of emission line ratios depends on galaxy magnitude and color. For galaxies on the blue side of the color bimodality, the vast majority show emission signatures of star formation, and there are strong correlations of extinction and [O II]/H-alpha with restframe H magnitude. The conversion of [O II] to extinction-corrected H-alpha and thus to star formation rate has a significant slope with M_H, 0.23 dex/mag. Red galaxies with emission lines have a much higher scatter in their line ratios, and more than half show AGN signatures. We use 24 micron fluxes from Spitzer/MIPS to demonstrate the differing populations probed by nebular emission and by mid-IR luminosity. Although extinction is correlated with luminosity, 98% of IR-luminous galaxies at z~1 are still detected in the [O II] line. Mid-IR detected galaxies are mostly bright and intermediate color, while fainter, bluer galaxies with high [O II] luminosity are rarely detected at 24 microns.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letters AEGIS special editio

    The DEEP2 Galaxy Redshift Survey: Mean Ages and Metallicities of Red Field Galaxies at z ~ 0.9 from Stacked Keck/DEIMOS Spectra

    Get PDF
    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 <= z <= 1. Comparison with models of stellar population synthesis shows that red galaxies at z ~ 0.9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. This result cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that star formation continued to at least z ~ 1.2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of Hdelta from z ~ 0.9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z ~ 0.9 to 0.1 is continually being added to by new galaxies with younger stars.Comment: A few typos were corrected and numbers in Table 1 were revise

    Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre

    Full text link
    We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA

    The DEEP3 Galaxy Redshift Survey: The Impact of Environment on the Size Evolution of Massive Early-type Galaxies at Intermediate Redshift

    Get PDF
    Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.Comment: 11 pages, 5 figures, 2 tables; resubmitted to MNRAS after addressing referee's comments (originally submitted to journal on August 16, 2011

    Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at z>1

    Get PDF
    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two hour exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.Comment: 7 pages, 4 figures. Accepted to ApJ Letter

    An injured pachypleurosaur (Diapsida:Sauropterygia) from the Middle Triassic Luoping Biota indicating predation pressure in the Mesozoic

    Get PDF
    Abstract The Middle Triassic Luoping Biota in south-west China represents the inception of modern marine ecosystems, with abundant and diverse arthropods, fishes and marine reptiles, indicating recovery from the Permian–Triassic mass extinction. Here we report a new specimen of the predatory marine reptile Diandongosaurus, based on a nearly complete skeleton. The specimen is larger than most other known pachypleurosaurs, and the body shape, caniniform teeth, clavicle with anterior process, and flat distal end of the anterior caudal ribs show its affinities with Diandongosaurus acutidentatus, while the new specimen is approximately three times larger than the holotype. The morphological characters indicate that the new specimen is an adult of D. acutidentatus, allowing for ontogenetic variation. The fang-like teeth and large body size confirm it was a predator, but the amputated hind limb on the right side indicate itself had been predated by an unknown hunter. Predation on such a large predator reveals that predation pressure in the early Mesozoic was intensive, a possible early hint of the Mesozoic Marine Revolution
    corecore