6 research outputs found

    Fourth-Order Deferred Correction Scheme for Solving Heat Conduction Problem

    Get PDF
    A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical solution of the one-dimensional heat equation. The fourth-order methods proposed are the easier development and can be solved by using Thomas algorithms. The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting problems with Dirichlet boundary conditions and initial data

    On Numerical Solution of the Incompressible Navier-Stokes Equations with Static or Total Pressure Specified on Boundaries

    No full text
    The purpose of this article is to develop and validate a computational method for the solution of viscous incompressible flow in a domain with specified static or total pressure on the flow-through boundaries (inflow and outflow). The computational algorithm is based on the Finite Volume Method in nonstaggered boundary-fitted grid. The implementations of the boundary conditions on the flow-through parts of the boundary are discussed. Test examples illustrate the main features and validity of the proposed method to study viscous incompressible flow through a bounded domain with specified static pressure (or total pressure) on boundary as a part of well-posed boundary conditions
    corecore