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Abstract. In this paper, we introduce four new iterative schemes by modifying the shrinking
projection method with Ishikawa iteration and S -iteration. The strong convergence theorems
are given for obtaining a common fixed point of two G-nonexpansive mappings in a Hilbert
space with a directed graph. We also give some numerical experiments for supporting our main
theorems and compare convergence rate between them.
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1. INTRODUCTION

Let C be a nonempty, closed and convex subset of a normed space X . A mapping
T W C ! C is said to be

1. contraction if there exists ˛ 2 .0;1/ such that kT x�Tyk � ˛kx�yk for all
x;y 2 C ;

2. nonexpansive if kT x�Tyk � kx�yk for all x;y 2 C .
The fixed point set of T is denoted by F.T /, that is, F.T /D fx 2 C W x D T xg.
The first important result on fixed points for contractive-type mapping was the well

known Banach’s contraction principle appeared in explicit form in Banach’s thesis in
1922, where it was used to establish the existence of a solution for an integral equa-
tion [4]. Since this date, many articles studied and considered fixed point theorems
and the existence of fixed points of a single-valued nonlinear mapping (see, for ex-
amples [2, 6, 22]).

In 1953, Mann [11] introduced the famous iteration procedure as follows:

x1 2 C

xnC1 D ınxnC .1� ın/T xn;
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for all n 2N where fıng � Œ0;1� and N the set of all positive integers. This iteration
is used to obtain weak convergence theorem (see for example [16, 18]).

In 1974, Ishikawa [8] generalized the Mann’s iterative algorithm by introduce the
following iteration:

x0 2 C

xnC1 D ınxnC .1� ın/Tyn;

yn D ˛nxnC .1�˛n/T xn;

for all n 2N where f˛ng and fıng are sequences in [0,1].
In 2007, Agarwal et al. [1] introduced and studied the S -iteration process for

a class of nearly asymptotically nonexpansive mappings in Banach spaces and this
scheme has a better convergence rate than Ishikawa iteration for a class of contrac-
tions in metric spaces.

In 2008, Takahashi et al. [23] just involved one closed convex set for a family
of nonexpansive mappings fTng and obtaining another modification of the Mann’s
iteration method:

u0 2H;u1 D PC1x0 with C1 D C;

yn D ˛nunC .1�˛n/Tnun;

CnC1 D f´ 2 Cn W kyn�´k � kun�´kg;

unC1 D PCnC1
x0:

They proved that if ˛n � a for all n � 1 and for some 0 < a < 1, then the sequence
fung converges strongly to PF ix.T /x0:

In 2008, by combination of the concepts in fixed point and graph theory, Jachym-
ski [9] generalized the Banach’s contraction principle in a complete metric space
endowed with a directed graph. Many papers dealt with this point for existence of
fixed points of monotone nonexpansive, G-nonexpansive and G-contraction map-
pings on a hyperbolic metric, Banach and Hilbert spaces endowed with graph and
directed graph. Also these articles discussed Browders convergence theorem for G
-nonexpansive mapping in a Hilbert space with a directed graph, weak and strong
convergence of the Ishikawa iteration forG-nonexpansive mappings (see for example
[3, 13, 24, 25]).

Motivated by the work of [1, 25], Suparatulatorn et al. [20] studied the following
modified S -iteration process:

x0 2 C;

yn D .1��n/xnC�nS1xn;

xnC1 D .1� ın/S1xnC .1� ın/S2yn; n� 0;
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where fıng and f�ng are sequences in (0, 1) and S1;S2 W C ! C are G-nonexpansive
mappings. Also they proved weak and strong convergence for approximating com-
mon fixed points of two G-nonexpansive mappings in a uniformly convex Banach
space X endowed with a graph under this iteration.

Motivated and inspired by the above works, we introduce the four different iter-
ative schemes by using the shrinking projection method for approximating a com-
mon fixed point of two G-nonexpansive mappings in Hilbert spaces. We then obtain
strong convergence theorems. Finally, we discuss some important numerical results
to illustrate the rate convergence of the four iterations.

2. PRELIMINARIES AND LEMMAS

In this section, we give some known definitions and lemmas which will be used in
the later sections.

Let C be a nonempty subset of a real Banach space X . Let4 denote the diagonal
of the cartesian product C �C , i.e.,4D f.x;x/ W x 24g: Consider a directed graph
G such that the set V.G/ of its vertices coincides with C , and the set E.G/ of its
edges contains all loops, i.e., E.G/�4. We assume G has no parallel edge. So we
can identify the graph G with the pair .V .G/;E.G//. A mapping S WG!G is said
to be
� G�contraction if S satisfies the conditions:

(i) S is edge-preserving, i.e.,

.x;y/ 2E.G/) .Sx;Sy/ 2E.G/;

(ii) S decreases weights of edges of G; i.e., there exists ı 2 .0;1/ such that

.x;y/ 2E.G/)kSx�Syk � ı kx�yk :

� G�nonexpansive if S satisfies the condition (i) and
(iii) S non-increases weights of edges of G; i.e.,

.x;y/ 2E.G/)kSx�Syk � kx�yk :

Definition 1. The symbol G�1 is called the conversion of a graph G and it is a
graph obtained from G by reversing the direction of edges as:

E.G�1/D f.x;y/ 2X �X W .y;x/ 2E.G/g:

Definition 2. The sequence fxj g
N
jD0 of N C1 vertices is called a path in G from

x to y of length N .N 2N[f0g/; where x0 D x, xN D y and .xj ;xjC1/ 2 E.G/

for j D 0;1; :::;N �1.

Definition 3. If there is a path between any two vertices of the graph G, then a
graph G is said to be connected.

Definition 4. If .x;y/ and .y;´/ 2 V.G/; then .x;´/ 2 V.G/: This property is
called the transitivity of a directed graph G D .V .G/;E.G// for all x;y;´ 2 V.G/:
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Definition 5. Let G D .V .G/;E.G// be a directed graph. The set of edges E.G/
is said to be convex if for any .x;y/; .´;w/ 2 E.G/ and for each t 2 .0;1/, then
.txC .1� t /´; tyC .1� t /w/ 2E.G/.

Definition 6. Let x0 2 V.G/ and A subset of V.G/: We say that
(i) A is dominated by x0 if .x0;x/ 2E.G/ for all x 2 A:
(ii) A dominates x0 if for each x 2 A, .x;x0/ 2E.G/:

Lemma 1 ([19]). Let C be a nonempty, closed and convex subset of a Hilbert
spaceH andGD .V .G/;E.G// a directed graph such that V.G/DC . Let T WC !
C be a G-nonexpansive mapping and fxng be a sequence in C such that xn *x for
some x 2 C . If, there exists a subsequence fxnkg of fxng such that .xnk ;x/ 2 E.G/

for all k 2N and fxn�T xng ! y for some y 2H . Then .I �T /x D y.

Let C be a nonempty, closed and convex subset of a Hilbert space H . The nearest
point projection ofH onto C is denoted by PC , that is, kx�PCxk � kx�yk for all
x 2H and y 2 C . Such PC is called the metric projection of H onto C . We know
that the metric projection PC is firmly nonexpansive, i.e.,

kPCx�PCyk
2
� hPCx�PCy;x�yi

for all x;y 2 H . Furthermore, hx �PCx;y �PCxi � 0 holds for all x 2 H and
y 2 C ; see [21].
We know that the following result.

Lemma 2. Let H be a real Hilbert space. Then

ktxC .1� t /yk2 D tkxk2C .1� t /kyk2� t .1� t /kx�yk2;

for all t 2 Œ0;1� and x;y 2H .

Lemma 3 ([10]). Let C be a nonempty, closed and convex subset of a real Hilbert
space H . Given x;y;´ 2H and also given a 2 R, the set

fv 2 C W ky�vk2 � kx�vk2Ch´;viCag

is convex and closed.

Lemma 4 ([12]). Let C be a nonempty, closed and convex subset of a real Hil-
bert space H and PC WH ! C be the metric projection from H onto C . Then the
following inequality holds:

ky�PCxk
2
Ckx�PCxk

2
� kx�yk2; 8x 2H; 8y 2 C:

3. MAIN RESULTS

In this section, by using the shrinking projection method, we obtain four different
strong convergence theorems for finding the same common fixed point of two G-
nonexpasive mappings in real Hilbert spaces.
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Theorem 1. Let C be a nonempty closed and convex subset of a real Hilbert
space H and let G D .V .G/;E.G// be a directed graph such that V.G/ D C and
E.G/ is convex. Let S1;S2 W C ! C be G-nonexpansive mappings such that F WD
F.S1/\F.S2/ ¤ ¿, F is closed and F.Si /�F.Si / � E.G/ for all i D 1;2. Let
fsng be a sequence generated by

s1 2 C; with C1 D C;

yn D .1�ˇn/snCˇnS1sn;

´n D .1�˛n/snC˛nS2yn; (3.1)

CnC1 D f´ 2 Cn W k´n�´k � ksn�´kg;

snC1 D PCnC1
s1; n� 1;

where f˛ng;fˇng � Œ0;1�. Assume that the following conditions hold:
(i) fsng dominates p for all p 2 F and if there exists a subsequence fsnkg of fsng
such that snk *w 2 C , then .snk ;w/ 2E.G/;
(ii) liminfn!1˛n > 0; (iii) 0 < liminfn!1ˇn � limsupn!1ˇn < 1.
Then the sequence fsng converges strongly to PF s1:

Proof. We split the proof into five steps.
Step 1. Show that PCnC1

s1 is well-defined for each s1 2 C: As shown in Theorem
3.2 of Tiammee et al. [24], F.Si / is convex for all i D 1;2: It follows from the
assumption that F is closed and convex. Hence, PF s1 is well-defined. We see that
C1 D C is closed and convex. Assume that Cn is closed and convex. From the
definition of CnC1 and Lemma 3, we get CnC1 is closed and convex. Let p 2 F .
Since fsng dominates p and S1 is edge-preserving, we have .S1sn;p/ 2 E.G/. This
implies that .yn;p/D ..1�ˇn/snCˇnS1sn;p/ 2 E.G/ by E.G/ is convex. Since
S2 is edge-preserving, we have

k´n�pk � .1�˛n/ksn�pkC˛nkS2yn�pk

� .1�˛n/ksn�pkC˛n..1�ˇn/ksn�pkCˇnkS1sn�pk/ (3.2)

� ksn�pk:

We can conclude that p 2CnC1: Thus F �CnC1. This implies that PCnC1
s1 is well-

defined.
Step 2. Show that limn!1 ksn � s1k exists. Since F is a nonempty, closed and
convex subset of H , there exists a unique v 2 F such that v D PF s1: From sn D

PCns1 and snC1 2 Cn, 8n 2N, we get

ksn� s1k � ksnC1� s1k; 8n 2N: (3.3)

On the other hand, as F � Cn, we obtain

ksn� s1k � kv� s1k; 8n 2N: (3.4)

It follows from (3.3) and (3.4) that the sequence fsng is bounded and nondecreasing.
Therefore limn!1 ksn� s1k exists.



946 H.A. HAMMAD, W. CHOLAMJIAK, D. YAMBANGWAI, AND H. DUTTA

Step 3. Show that sn! w 2 C as n!1. For m > n, by the definition of Cn, we
see that sm D PCms1 2 Cm � Cn. From Lemma 4, we have

ksm� snk
2
� ksm� s1k

2
�ksn� s1k

2:

From Step 3, we obtain that fsng is a Cauchy sequence. Hence, there exists w 2 C
such that sn! w as n!1. In particular, we have

lim
n!1

ksnC1� snk D 0: (3.5)

Step 4. Show that w 2 F . Since snC1 2 Cn, it follows from (3.5) that

k´n� snk � k´n� snC1kCksnC1� snk � 2ksnC1� snk! 0 (3.6)

as n!1. Since liminfn!1˛n > 0 and (3.6), we have

kS2yn� snk D
1

˛n
k´n� snk! 0; (3.7)

as n!1. From fsng dominates p for all p 2 F and Lemma 2, we get

k´n�pk
2
� .1�˛n/ksn�pk

2
C˛nkS2yn�pk

2

� .1�˛n/ksn�pk
2
C˛n

�
.1�ˇn/ksn�pk

2 (3.8)

CˇnkS1sn�pk
2
� .1�ˇn/ˇnkS1sn� snk

2
�

� ksn�pk
2
�˛n.1�ˇn/ˇnkS1sn� snk

2:

This implies that

˛n.1�ˇn/ˇnkS1sn� snk
2
� ksn�pk

2
�k´n�pk

2: (3.9)

From our assumptions and (3.6), we have

lim
n!1

kS1sn� snk D 0: (3.10)

This implies that

lim
n!1

kyn� snk D lim
n!1

ˇnkS1sn� snk D 0: (3.11)

It follows from (3.7) and (3.11) that

kS2yn�ynk � kS2yn� snkCksn�ynk! 0; (3.12)

as n!1. By Lemma 1, (3.10), (3.11) and (3.12), we have w 2 F .
Step 5. Show that w D v D PF s1. Since sn D PCns1, we have

hs1� sn; sn�pi � 0; 8p 2 Cn: (3.13)

By taking the limit in (3.13), we obtain

hs1�w;w�pi � 0; 8p 2 Cn: (3.14)

Since F � Cn, so w D PF s1. This completes the proof. �
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Theorem 2. Let C be a nonempty closed and convex subset of a real Hilbert
space H and let G D .V .G/;E.G// be a directed graph such that V.G/ D C and
E.G/ is convex. Let S1;S2 W C ! C be G-nonexpansive mappings such that F WD
F.S1/\F.S2/ ¤ ¿, F is closed and F.Si /�F.Si / � E.G/ for all i D 1;2. Let
ftng be a sequence generated by

t1 2 C; with C1 D C;

yn D .1�ˇn/tnCˇnS1tn;

´n D .1�˛n/ynC˛nS2yn; (3.15)

CnC1 D f´ 2 Cn W k´n�´k � ktn�´kg;

tnC1 D PCnC1
t1; n� 1;

where f˛ng;fˇng � Œ0;1�. Assume that the following conditions hold:
(i) ftng dominates p for all p 2 F and if there exists a subsequence ftnkg of ftng such
that tnk *w 2 C , then .tnk ;w/ 2E.G/;
(ii) liminfn!1˛n > 0; (iii) 0 < liminfn!1ˇn � limsupn!1ˇn < 1.
Then the sequence ftng converges strongly to PF t1:

Proof. We set tn D sn, by the same proof of Step 1 in Theorem 1, we have PF t1
well-defined, CnC1 is closed convex for all n2N and .yn;p/2E.G/ for each p 2F .
Since S1; S2 are edge-preserving, we have

k´n�pk � .1�˛n/kyn�pkC˛nkS2yn�pk

� .1�ˇn/ktn�pkCˇnkS1tn�pk � ktn�pk:

We can conclude that p 2CnC1: Thus F �CnC1. This implies that PCnC1
t1 is well-

defined. By the same proof of Step 2-3 in Theorem 1, we obtain tn ! w 2 C as
n!1. We next show that w 2 F . Since tnC1 2 Cn, it follows from (3.5) that

k´n� tnk � k´n� tnC1kCktnC1� tnk � 2ktnC1� tnk! 0 (3.16)

as n!1. Since ftng dominates p for all p 2 F , we get

k´n�pk
2
� .1�˛n/kyn�pk

2
C˛nkS2yn�pk

2

� .1�ˇn/ktn�pk
2
CˇnkS1tn�pk

2
� .1�ˇn/ˇnkS1tn� tnk

2

� ktn�pk
2
� .1�ˇn/ˇnkS1tn� tnk

2: (3.17)

This implies that

.1�ˇn/ˇnkS1tn� tnk
2
� ktn�pk

2
�k´n�pk

2: (3.18)

From our assumption (ii) and (3.18), we have

lim
n!1

kS1tn� tnk D 0: (3.19)

This implies that

lim
n!1

kyn� tnk D lim
n!1

ˇnkS1tn� tnk D 0: (3.20)
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It follows from (3.16) and (3.20) that

kyn�´nk � kyn� tnkCktn�´nk! 0; (3.21)

as n!1. From liminfn!1˛n > 0 and (3.21), we have

lim
n!1

kS2yn�ynk D lim
n!1

1

˛n
k´n�ynk D 0: (3.22)

By Lemma 1, (3.19), (3.20) and (3.22), we have w 2 F . From Step 5 in Theorem 1,
we obtain w D PF t1. This completes the proof. �

Theorem 3. Let C be a nonempty closed and convex subset of a real Hilbert
space H and let G D .V .G/;E.G// be a directed graph such that V.G/ D C and
E.G/ is convex. Let S1;S2 W C ! C be G-nonexpansive mappings such that F WD
F.S1/\F.S2/ ¤ ¿, F is closed and F.Si /�F.Si / � E.G/ for all i D 1;2. Let
fung be a sequence generated by

u1 2 C; with C1 D C;

yn D .1�ˇn/unCˇnS1un;

´n D .1�˛n/S1unC˛nS2yn; (3.23)

CnC1 D f´ 2 Cn W k´n�´k � kun�´kg;

unC1 D PCnC1
u1; n� 1;

where f˛ng;fˇng � Œ0;1�. Assume that the following conditions hold:
(i) fung dominates p for all p 2 F and if there exists a subsequence funkg of fung

such that unk *w 2 C , then .unk ;w/ 2E.G/;
(ii) 0 < liminfn!1˛n � limsupn!1˛n < 1;
(iii) 0 < liminfn!1ˇn � limsupn!1ˇn < 1.
Then the sequence fung converges strongly to PF u1:

Proof. We set un D sn, by the same proof of Step 1 in Theorem 1, we have PF u1

well-defined, CnC1 is closed convex for all n2N and .yn;p/2E.G/ for each p 2F .
Since S1; S2 are edge-preserving, we have

k´n�pk � .1�˛n/kS1un�pkC˛nkS2yn�pk (3.24)

� .1�˛n/kun�pkC˛n..1�ˇn/kun�pkCˇnkS1un�pk/

� kun�pk:

We can conclude that p 2 CnC1: Thus F � CnC1. This implies that PCnC1
u1 is

well-defined. By the same proof of Step 2-3 in Theorem 1, we obtain un! w 2 C

as n!1. We next show that w 2 F . Since unC1 2 Cn, it follows from (3.5) that

k´n�unk � k´n�unC1kCkunC1�unk � 2kunC1�unk! 0 (3.25)

as n!1. Since fung dominates p for all p 2 F , we get

k´n�pk
2
� .1�˛n/kS1un�pk

2
C˛nkS2yn�pk

2
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� .1�˛n/kun�pk
2
C˛n

�
.1�ˇn/kun�pk

2 (3.26)

CˇnkS1un�pk
2
� .1�ˇn/ˇnkS1un�unk

2
�

� kun�pk
2
�˛n.1�ˇn/ˇnkS1un�unk

2:

This implies that

.1�ˇn/ˇnkS1un�unk
2
� kun�pk

2
�k´n�pk

2: (3.27)

From our assumption (ii) and (3.27), we have

lim
n!1

kS1un�unk D 0: (3.28)

This implies that

lim
n!1

kyn�unk D lim
n!1

ˇnkS1un�unk D 0: (3.29)

It follows from (3.28) and (3.29) that

kS1un�ynk � kS1un�unkCkun�ynk! 0; (3.30)

as n!1. For p 2 F , it follows from (3.24) that

k´n�pk
2
D .1�˛n/kS1un�pk

2
C˛nkS2yn�pk

2
� .1�˛n/˛nkS1un�S2ynk

2

� .1�˛n/kun�pk
2
C˛nkyn�pk

2
� .1�˛n/˛nkS1un�S2ynk

2

� kun�pk
2
� .1�˛n/˛nkS1un�S2ynk

2:

This implies that

.1�˛n/˛nkS1un�S2ynk
2
� kun�pk

2
�k´n�pk

2: (3.31)

From the assumption (i) and (3.25), we have

lim
n!1

kS1un�S2ynk D 0: (3.32)

It follows from (3.30) and (3.32) that

kS2yn�ynk � kS2yn�S1unkCkS1un�ynk! 0; (3.33)

as n!1.

lim
n!1

kS2yn�ynk D lim
n!1

1

˛n
k´n�ynk D 0: (3.34)

By Lemma 1, (3.28), (3.29) and (3.34), we have w 2 F . From Step 5 in Theorem 1,
we obtain w D PF u1. This completes the proof. �

Theorem 4. Let C be a nonempty closed and convex subset of a real Hilbert
spaceH and let G D .V .G/;E.G// be a directed graph such that V.G/DC , E.G/
is convex and G is transitive. Let S1;S2 W C ! C be G-nonexpansive mappings
such that F WD F.S1/\F.S2/¤¿, F is closed and F.Si /�F.Si /�E.G/ for all
i D 1;2. Let fvng be a sequence generated by

v1 2 C; with C1 D C;
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yn D .1�ˇn/vnCˇnS1vn;

´n D .1�˛n/S1ynC˛nS2yn; (3.35)

CnC1 D f´ 2 Cn W k´n�´k � kvn�´kg;

vnC1 D PCnC1
v1; n� 1;

where f˛ng;fˇng � Œ0;1�. Assume that the following conditions hold:
(i) .vn;p/, .p;vn/ 2E.G/ for all p 2 F and n 2N and if there exists a subsequence
fvnkg of fvng such that vnk *w 2 C , then .vnk ;w/ 2E.G/;
(ii) 0 < liminfn!1˛n � limsupn!1˛n < 1;
(iii) 0 < liminfn!1ˇn � limsupn!1ˇn < 1.
Then the sequence fxng converges strongly to PF v1:

Proof. We set vn D sn, by the same proof of Step 1 in Theorem 1, we have PF v1

well-defined, CnC1 is closed convex for all n2N and .yn;p/2E.G/ for each p 2F .
Since S1; S2 are edge-preserving, we have

k´n�pk � .1�˛n/kS1yn�pkC˛nkS2yn�pk

� .1�ˇn/kvn�pkCˇnkS1vn�pk (3.36)

� kvn�pk:

We can conclude that p 2 CnC1: Thus F � CnC1. This implies that PCnC1
v1 is

well-defined. By the same proof of Step 2-3 in Theorem 1, we obtain vn! w 2 C

as n!1. We next show that w 2 F . Since vnC1 2 Cn, it follows from (3.5) that

k´n�vnk � k´n�vnC1kCkvnC1�vnk � 2kvnC1�vnk! 0 (3.37)

as n!1. Since fvng dominates p for all p 2 F , we get

k´n�pk
2
� .1�˛n/kS1yn�pk

2
C˛nkS2yn�pk

2 (3.38)

� .1�ˇn/kvn�pk
2
CˇnkS1vn�pk

2
� .1�ˇn/ˇnkS1vn�vnk

2
�

� kvn�pk
2
� .1�ˇn/ˇnkS1vn�vnk

2:

This implies that

.1�ˇn/ˇnkS1vn�vnk
2
� kvn�pk

2
�k´n�pk

2: (3.39)

From our assumption (ii) and (3.39), we have

lim
n!1

kS1vn�vnk D 0: (3.40)

This implies that

lim
n!1

kyn�vnk D lim
n!1

ˇnkS1vn�vnk D 0: (3.41)

It follows from (3.37) and (3.41) that

kyn�´nk � kyn�vnkCkvn�´nk! 0; (3.42)
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as n!1. We next show that .vn;yn/ 2 E.G/ for all n 2 N. Let p 2 F . Since
.p;vn/ 2E.G/ and S1 is edge-preserving, so .p;S1vn/ 2E.G/ for all n 2N. Then,
.p;yn/D .p;.1�ˇn/vnCˇnS1vn/ 2 E.G/ by E.G/ is convex. Since G is transit-
ive, .vn;yn/ 2E.G/. This implies that

kS1yn�ynk � kS1yn�S1vnkCkS1vn�vnkCkvn�ynk

� 2kyn�S1vnkCkS1vn�vnk:

It follows from (3.40), (3.41) and (3.43) that

lim
n!1

kS1yn�ynk D 0: (3.43)

It follows from (3.42) and (3.43) that

kS1yn�´nk � kS1yn�ynkCkyn�´nk! 0; (3.44)

as n!1. From liminfn!1˛n > 0 and (3.44), we have

lim
n!1

kS2yn�´nk D lim
n!1

1

˛n
k´n�S1ynk D 0: (3.45)

It follows from (3.42) and (3.46) that

kS2yn�ynk � kS2yn�´nkCk´n�ynk! 0; (3.46)

as n!1. By Lemma 1, (3.41), (3.43) and (3.46), we have w 2 F . From Step 5 in
Theorem 1, we obtain w D PF v1. This completes the proof. �

4. CONVERGENCE RATE

In this section, we give examples and numerical results for supporting our main
theorem. Moreover, we compare convergence rate of all iterations in Theorem 1-4.
In 1976, Rhoades [17] gave the idea how to compare the rate of convergence between
two iterative methods as follows:

Definition 7 ([17]). Let C be a nonempty closed convex subset of a Banach space
X and S W C ! C be be a mapping. Suppose fxng and fyng are two iterations which
converge to a fixed point p of S . Then fxng is said to converge faster than fyng if

kxn�pk � kyn�pk;

for all n� 1.

In 2011, Phuengrattana and Suantai [14] showed that the Ishikawa iteration con-
verges faster than the Mann iteration for a class of continuous functions on the closed
interval in a real line. In order to study, the order of convergence of a real sequence
fxng converging to p, we usually use the well-known terminology in numerical ana-
lysis, see [7], for example.



952 H.A. HAMMAD, W. CHOLAMJIAK, D. YAMBANGWAI, AND H. DUTTA

Definition 8 ([7]). Suppose fxng is a sequence that converges to p, with xn ¤ p

for all n. If positive constants a and b exist with

lim
n!1

jxnC1�pj

jxn�pjb
D a;

then fxng converges to p of order a, with asymptotic error constant b. If b D 1 (and
a < 1), the sequence is linearly convergent and if bD 2, the sequence is quadratically
convergent.

In 2002, Berinde [5] employed above concept for comparing the rate of conver-
gence between the two iterative methods as follows:

Definition 9 ([5]). Let fxng and fyng be two sequences of positive numbers that
converge to p, q,respectively. Assume there exists

lim
n!1

jxn�pj

jyn�qj
D `:

(i) If ` D 0, then it is said that the sequence fxng converges to p faster than the
sequence fyng to q.
(ii) If 0 < ` <1, then we say that the sequence fxng and fyng have the same rate of
convergence.

Definition 10 ([5, 15]). Let C be a nonempty closed convex subset of a Banach
space X and S W C ! C be a mapping. Suppose fxng and fyng are two iterations
which converge to p fixed point q of S . We say that fxng converges faster than fyng

to q if

lim
n!1

kxn�pk

kyn�qk
D 0:

We now give an example in Euclidian space R3 which shows numerical experiment
for supporting our main results and comparing the rate of convergence of all iterations
in Theorem 1-4.

Example 1. Let H D R3 and C D Œ�2;0�3. Assume that .x;y/ 2 E.G/ if and
only if �1:5 � xi ;yi � �0:5 or x D y for all x D .x1;x2;x3/;y D .y1;y2;y3/ 2

C . Define a mappings S1;S2 W C ! C by S1x D .
arcsin.x1C1/

2
� 1; log.x2C 2/�

1;�1/ and S2xD .�1;�1;
cot.x3��2C1/

2
�1/ for all xD .x1;x2;x3/ 2C . It is easy to

check that S1 and S2 are G-nonexpansive such that F.S1/\F.S2/Df.�1;�1;�1/g.
On the other hand, S1 is not nonexpansive since for x D .�2;�1:46;�1/ and y D
.�1:49;�1:82;�1/. This implies that kS1.x/�S1.y/k>0:70> kx�yk. Moreover,
S2 is not nonexpansive since for x D .�1;�1;�1:55/ and y D .�1;�1;�1:97/, we
have kS2.x/�S2.y/k> 0:42 > kx�yk.
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We provide a numerical test of a comparison of all iterations in Theorem 1-4 and
choose ˛n D

nC1
5nC3

, ˇn D
nC3

10nC5
. The stoping criterion is defined by kxnC1�xnk<

10�7. The different choices of x0 are given in Table 1.

TABLE 1. Comparison the methods in Theorem 1-4 of Example 1

Choice 1: (-1.25,-0.9,-0.65) Choice 2: (-1.45,-1.2,-0.7)
Iterations Iterations CPU Time Iterations CPU Time

Number (sec) Number (sec)
(3.1) 118 2.344643e-03 124 1.618338e-03
(3.15) 97 2.896767e-03 102 1.452308e-03
(3.23) 39 2.051223e-03 41 1.233451e-03
(3.35) 38 3.913172e-03 39 3.129209e-03

By computing, we obtain the sequences fxng generated in Theorem 1-4 converge
to (-1,-1,-1). We next show the following error plots of kxnC1�xnk.
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FIGURE 1. Error plots for sequences fxng in Table 1 of choice 1 and
choice 2, respectively.

We note that pD .�1;�1;�1/ is a common fixed point of S1 and S2. We compare
the rate of convergence of fsng, ftng, fung and fvng for Choice 1: x0D .�1:25;�0:9;�0:65/

and Choice 2: x0 D .�1:45;�1:2;�0:7/.
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TABLE 2. Comparison the rate of convergence of all iterations in
Theorem 1-4 of Example 1 by choosing x0 D .�1:25;�0:9;�0:65/

n kvn�pk
ksn�pk

kvn�pk
ktn�pk

kvn�pk
kun�pk

kun�pk
ksn�pk

kun�pk
ktn�pk

ktn�pk
ksn�pk

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 0.637538 0.979056 0.704657 0.651176 0.719731 0.904749
2 0.434675 0.952151 0.515409 0.456519 0.541310 0.843360
3 0.314266 0.924612 0.394249 0.339890 0.426395 0.797125
4 0.236078 0.899949 0.310695 0.262324 0.345236 0.759841
5 0.181039 0.878591 0.248470 0.206056 0.282805 0.728615
6 0.140193 0.859748 0.199756 0.163063 0.232342 0.701821
7 0.095220 0.842647 0.160677 0.113001 0.190681 0.592617
8 0.074299 0.826834 0.129054 0.089860 0.156083 0.575721
9 0.057963 0.811696 0.103409 0.071409 0.127399 0.560516

TABLE 3. Comparison the rate of convergence of all iterations in
Theorem 1-4 of Example 1 by choosing x0 D .�1:45;�1:2;�0:7/

n kvn�pk
ksn�pk

kvn�pk
ktn�pk

kvn�pk
kun�pk

kun�pk
ksn�pk

kun�pk
ktn�pk

ktn�pk
ksn�pk

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 0.713514 0.966823 0.768432 0.737998 0.794801 0.928531
2 0.527376 0.937880 0.598780 0.562306 0.638440 0.880750
3 0.397672 0.913037 0.471501 0.435549 0.516410 0.843417
4 0.302854 0.891493 0.372931 0.339716 0.418322 0.812092
5 0.231693 0.872302 0.295256 0.265611 0.338479 0.784719
6 0.177594 0.854743 0.233630 0.207774 0.273334 0.760149
7 0.136232 0.838398 0.184673 0.162490 0.220269 0.737690
8 0.104523 0.822910 0.145806 0.127016 0.177183 0.716861
9 0.080194 0.808107 0.114999 0.099237 0.142307 0.697345

Remark 1. From Figure 1, Table 1-3, it is shown that the iteration (3.35) has a
good convergence speed and requires small number of iterations than the other three
iterations for each of the choices.
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