171 research outputs found

    Phosphatidylinositol 4-phosphate 5-kinase β regulates growth cone morphology and Semaphorin 3A-triggered growth cone collapse in mouse dorsal root ganglion neurons

    Get PDF
    Growth cone motility and morphology, which are critical for axon guidance, are controlled through intracellular events such as actin cytoskeletal reorganization and vesicular trafficking. The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] has been implicated in regulation of these cellular processes in a diverse range of cell types. The main kinases involved in the production of PI(4,5)P2 are the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family, which consist of three isozymes, α, β and γ. Here, we demonstrate the involvement of PIP5Kβ in growth cone dynamics. Overexpression of a lipid kinase-deficient mutant of PIP5Kβ (PIP5Kβ-KD) in mouse dorsal root ganglion (DRG) neurons stimulated axon elongation and increased growth cone size, whereas wild-type PIP5Kβ tended to show opposite effects. Furthermore, PIP5Kβ-KD inhibited growth cone collapse of DRG neurons induced by semaphorin 3A (Sema3A). These results provide evidence that PIP5Kβ negatively regulates axon elongation and growth cone size and is involved in the cellular signaling pathway for Sema3A-triggered repulsion in DRG neurons

    The small GTPase ADP-ribosylation factor 6 negatively regulates dendritic spine formation

    Get PDF
    AbstractActin cytoskeletal reorganization and membrane trafficking are important for spine morphogenesis. Here we investigated whether the small GTPase, ADP-ribosylation factor 6 (ARF6), which regulates actin dynamics and peripheral vesicular trafficking, is involved in the regulation of spine formation. The developmental expression pattern of ARF6 in mouse hippocampus was similar to that of the post-synaptic density protein-95, and these molecules colocalized in mouse hippocampal neurons. Overexpression of a constitutively active ARF6 mutant in cultured hippocampal neurons decreased the spine density, whereas a dominant-negative ARF6 mutant increased the density. These results demonstrate a novel function for ARF6 as a key regulator of spine formation

    Tissue flow regulates planar cell polarity independently of the Frizzled core pathway

    Get PDF
    Planar cell polarity (PCP) regulates the orientation of external structures. A core group of proteins that includes Frizzled forms the heart of the PCP regulatory system. Other PCP mechanisms that are independent of the core group likely exist, but their underlying mechanisms are elusive. Here, we show that tissue flow is a mechanism governing core group-independent PCP on the Drosophila notum. Loss of core group function only slightly affects bristle orientation in the adult central notum. This near-normal PCP results from tissue flow-mediated rescue of random bristle orientation during the pupal stage. Manipulation studies suggest that tissue flow can orient bristles in the opposite direction to the flow. This process is independent of the core group and implies that the apical extracellular matrix functions like a “comb” to align bristles. Our results reveal the significance of cooperation between tissue dynamics and extracellular substances in PCP establishment

    Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori

    Get PDF
    Diapause represents a major developmental switch in insects and is a seasonal adaptation that evolved as a specific subtype of dormancy in most insect species to ensure survival under unfavorable environmental conditions and synchronize populations. However, the hierarchical relationship of the molecular mechanisms involved in the perception of environmental signals to integration in morphological, physiological, behavioral, and reproductive responses remains unclear. In the bivoltine strain of the silkworm Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother. Here, we show that the hierarchical pathway consists of a gamma-aminobutyric acid (GABA)ergic and corazonin signaling system modulating progeny diapause induction via diapause hormone release, which may be finely tuned by the temperature-dependent expression of plasma membrane GABA transporter. Furthermore, this signaling pathway possesses similar features to the gonadotropin-releasing hormone (GnRH) signaling system for seasonal reproductive plasticity in vertebrates.ArticleProceedings of The National Academy of Sciences of The United States of America 118(1) : e2020028118-(2021)journal articl

    Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions

    Get PDF
    We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap II we focus on electron and antimatter interactions. Modern theoretical and experimental approaches provide detailed insight into the many body quantum dynamics of leptonic collisions with targets of varying complexity ranging from neutral and charged atoms to large biomolecules and clusters. These developments have been driven by technological progress and by the needs of adjacent areas of science such as astrophysics, plasma physics and radiation biophysics. This Roadmap aims at looking back along the road, explaining the evolution of the field, and looking forward, collecting contributions from eighteen leading groups from the field
    corecore