23 research outputs found

    Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone

    Get PDF
    統合失調症に関わるドパミン受容体の構造解明 --副作用を抑えた薬の迅速な探索・設計が可能に--. 京都大学プレスリリース. 2020-12-24.In addition to the serotonin 5-HT2A receptor (5-HT2AR), the dopamine D2 receptor (D2R) is a key therapeutic target of antipsychotics for the treatment of schizophrenia. The inactive state structures of D2R have been described in complex with the inverse agonists risperidone (D2Rris) and haloperidol (D2Rhal). Here we describe the structure of human D2R in complex with spiperone (D2Rspi). In D2Rspi, the conformation of the extracellular loop (ECL) 2, which composes the ligand-binding pocket, was substantially different from those in D2Rris and D2Rhal, demonstrating that ECL2 in D2R is highly dynamic. Moreover, D2Rspi exhibited an extended binding pocket to accommodate spiperone’s phenyl ring, which probably contributes to the selectivity of spiperone to D2R and 5-HT2AR. Together with D2Rris and D2Rhal, the structural information of D2Rspi should be of value for designing novel antipsychotics with improved safety and efficacy

    Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin

    Get PDF
    X線自由電子レーザーを用いて、光照射によるチャネルロドプシンの構造変化の過程を捉えることに成功. 京都大学プレスリリース. 2021-03-26.Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore

    ヒト扁桃腺濾胞でのB細胞分化の単クローン抗体を用いる免疫組織学的検討

    Get PDF
    雑誌掲載版免疫ペルオキシダーゼ法および,B1, B2, OKT9, OKT10, Leu-7などの単クローン抗体を用いて扁桃腺濾胞におけるB細胞分化について観察した.Mantle zoneはB1で濃くB2で軽度に染色されたが,germinal centerはB1, OKT10, OKT9で染色されB2でより濃く染色された.Germinal centerの中間層では,或る種の大型細胞がOKT10で染色された.Leu-7陽性細胞もgerminal center中間層に認められた.これらの成績をもとに,B細胞の分化について考察を加え

    Nasopharyngeal colonization with nontypeable Haemophilus influenzae and recurrent otitis media

    Get PDF
    University of Chicago Press, Harabuchi, Y. ; Faden, H. ; Yamanaka, N. ; Duffy, L. ; Wolf, J. ; Krystofik, D. ; Williamsville, T.,Journal of Infectious Diseases, 170(4), 1994, 862-866. publisherThe relationship between nasopharyngeal colonization with nontypeable H. influenzae and recurrent otitis media was assessed in 157 children followed prospectively from birth through 12 months of age. Forty-nine (31%) became colonized. Nasopharyngeal secretory IgA (sIgA) reactive with the P6 outer membrane protein was detected in all colonized children. Reduction or elimination of the organism was associated with a better mucosal immune response (560 +/- 864 units/ng/mL of sIgA) than was persistence in the nasopharynx (121 +/- 81; P = .04). Forty colonized children (82%) and 61 noncolonized children (56%) developed otitis media (P = .004); colonized children were four times more likely to be classified as otitis prone (P = .003). The frequency of otitis media episodes was directly related to the frequency of colonization (r = .42, P < .01). These results demonstrate a strong relationship between nasopharyngeal colonization patterns and otitis media. The mucosal immune response may be important in elimination of potential pathogens from the respiratory tract

    Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8)α(8) barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme

    Crystal structure and functional studies of an unusual l -cysteine desulfurase from Archaeoglobus fulgidus

    No full text
    International audienceL-Cysteine desulfurase IscS and scaffold IscU proteins are universally involved in Fe/S cluster synthesis. The Archaeoglobus fulgidus (Af) genome encodes proteins having a high degree of primary structure similarity to IscS and IscU from other organisms. However, AfIscS is unusual because it lacks the active site lysine residue that normally forms an internal Schiff base with pyridoxal-phosphate (PLP) and serves as a base during catalysis. Our as-isolated recombinant AfIscS contains pyridoxamine phosphate (PMP) instead of the expected PLP and lacks desulfurase activity. We have solved its structure to 1.43 Å resolution and found that PMP binds non-covalently at the PLP site of the enzyme and displays significant disorder. However, the previously reported structure of recombinant Af(IscU-D35A-IscS)(2) contains an in vivo generated [Fe(2)S(2)] species within AfIscU and the question arises as to how its sulfides were generated. Here, we report that adding PLP to AfIscS produces an enzyme that displays in vitro L-cysteine desulfurase activity mediating the synthesis of a stable holo Af(IscU-D35A-IscS) complex

    Crystal structure and functional studies of an unusual l -cysteine desulfurase from Archaeoglobus fulgidus

    Get PDF
    International audienceL-Cysteine desulfurase IscS and scaffold IscU proteins are universally involved in Fe/S cluster synthesis. The Archaeoglobus fulgidus (Af) genome encodes proteins having a high degree of primary structure similarity to IscS and IscU from other organisms. However, AfIscS is unusual because it lacks the active site lysine residue that normally forms an internal Schiff base with pyridoxal-phosphate (PLP) and serves as a base during catalysis. Our as-isolated recombinant AfIscS contains pyridoxamine phosphate (PMP) instead of the expected PLP and lacks desulfurase activity. We have solved its structure to 1.43 Å resolution and found that PMP binds non-covalently at the PLP site of the enzyme and displays significant disorder. However, the previously reported structure of recombinant Af(IscU-D35A-IscS)(2) contains an in vivo generated [Fe(2)S(2)] species within AfIscU and the question arises as to how its sulfides were generated. Here, we report that adding PLP to AfIscS produces an enzyme that displays in vitro L-cysteine desulfurase activity mediating the synthesis of a stable holo Af(IscU-D35A-IscS) complex
    corecore