3,092 research outputs found

    Protection of rat renal vitamin E levels by ischemic-preconditioning

    Get PDF
    BACKGROUND: During renal transplantation, the kidney remains without blood flow for a period of time. The following reperfusion of this ischemic kidney causes functional and structural injury. Formation of oxygen-derived free radicals (OFR) and subsequent lipid peroxidation (LP) has been implicated as the causative factors of these injuries. Vitamin E is known to be the main endogenous antioxidant that stabilizes cell membranes by interfering with LP. The present study was designed to examine the role of ischemic-preconditioning (repeated brief periods of ischemia, IPC) in prevention of renal injury caused by ischemia-reperfusion (IR) in rats. METHODS: IPC included sequential clamping of the right renal artery for 5 min and release of the clamp for another 5 min for a 3 cycles. IR was induced by 30 min ischemia followed by 10 min reperfusion. Four groups of male rats were used: Control, IPC, IR and IPC-IR. Vitamin E, an endogenous antioxidant and as an index of LP, was measured by HPLC and UV detection in renal venous plasma and tissue. Renal function was assessed by serum creatinine and BUN levels. Renal damage was assessed in sections stained with Haematoxylin and Eosin. RESULTS: In the IR group, there was a significant decrease in vitamin E in plasma and tissue compared to a control group (p,0.05). In the IPC-IR group, vitamin E concentration was significantly higher than in the IR group (p,0.01). The results showed that 30 min ischemia in the IR group significantly (p,0.05) reduced renal function demonstrated by an increase in serum creatinine levels as compared with the control group. These results in the IPC group also showed a significant difference with the IR group but no significant difference in serum BUN and creatinine between IR and IPC-IR group were detected. Histological evaluation showed no structural damage in the IPC group and an improvement in the IPC-IR group compared to IR alone. CONCLUSIONS: In this study, IPC preserved vitamin E levels, but it could not markedly improve renal function in the early phase (1–2 h) of reperfusion. IPC may be a useful method for antioxidant preservation in organ transplantation

    Paradoxical Regulation of Human FGF21 by Both Fasting and Feeding Signals: Is FGF21 a Nutritional Adaptation Factor?

    Get PDF
    Fibroblast growth factor 21 (FGF21) has recently emerged as a metabolic hormone involved in regulating glucose and lipid metabolism in mouse, but the regulatory mechanisms and actions of FGF21 in humans remain unclear. Here we have investigated the regulatory mechanisms of the human FGF21 gene at the transcriptional level. A deletion study of the human FGF21 promoter (βˆ’1672 to +230 bp) revealed two fasting signals, including peroxisome proliferator-activated receptor Ξ± (PPARΞ±) and glucagon signals, that independently induced human FGF21 gene transcription in mouse primary hepatocytes. In addition, two feeding signals, glucose and xylitol, also dose-dependently induced human FGF21 gene transcription and mRNA expression in both human HepG2 cells and mouse primary hepatocytes. FGF21 protein expression and secretion were also induced by high glucose stimulation. The human FGF21 promoter (βˆ’1672 to +230 bp) was found to have a carbohydrate-responsive element at βˆ’380 to βˆ’366 bp, which is distinct from the PPAR response element (PPRE). Knock-down of the carbohydrate response element binding protein by RNAi diminished glucose-induced human FGF21 transcription. Moreover, we found that a region from βˆ’555 to βˆ’443 bp of the human FGF21 promoter region exerts an important role in the activation of basic transcription. In conclusion, human FGF21 gene expression is paradoxically and independently regulated by both fasting and feeding signals. These regulatory mechanisms suggest that human FGF21 is increased with nutritional crisis, including starvation and overfeeding

    Grey matter volume alterations in CADASIL: a voxel-based morphometry study

    Get PDF
    CADASIL is a hereditary disease characterized by cerebral subcortical microangiopathy leading to early onset cerebral strokes and progressive severe cognitive impairment. Until now, only few studies have investigated the extent and localization of grey matter (GM) involvement. The purpose of our study was to evaluate GM volume alterations in CADASIL patients compared to healthy subjects. We also looked for correlations between global and regional white matter (WM) lesion load and GM volume alterations. 14 genetically proved CADASIL patients and 12 healthy subjects were enrolled in our study. Brain MRI (1.5Β T) was acquired in all subjects. Optimized-voxel based morphometry method was applied for the comparison of brain volumes between CADASIL patients and controls. Global and lobar WM lesion loads were calculated for each patient and used as covariate-of-interest for regression analyses with SPM-8. Compared to controls, patients showed GM volume reductions in bilateral temporal lobes (pΒ <Β 0.05; FDR-corrected). Regression analysis in the patient group revealed a correlation between total WM lesion load and temporal GM atrophy (pΒ <Β 0.05; uncorrected), not between temporal lesion load and GM atrophy. Temporal GM volume reduction was demonstrated in CADASIL patients compared to controls; it was related to WM lesion load involving the whole brain but not to lobar and, specifically, temporal WM lesion load. Complex interactions between sub-cortical and cortical damage should be hypothesized

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles

    Get PDF
    The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2

    The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    Get PDF
    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    Get PDF
    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (β€Š=β€ŠAmphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite
    • …
    corecore