4,545 research outputs found

    In-situ epitaxial growth of superconducting La-based bilayer cuprate thin films

    Full text link
    We investigate the epitaxial growth of bilayer cuprate La2CaCu2O6+\delta using pure ozone as an oxidant, and find that even the crystal with parent composition without cation substitution can show metallic behavior with the aid of epitaxial strain effect. The hole concentration is controlled simply by excess-oxygen doping, and the films grown under the optimum conditions exhibit superconductivity below 30 K. This is the first result on the superconductivity of bilayer La2CaCu2O6+\delta induced purely by the excess oxygen.Comment: 5 pages, 3 figures, To appear in Phys. Rev. B, Rapid Communication

    At-sea distribution and habitat of breeding Japanese Murrelets Synthliboramphus wumizusume: implications for conservation management

    Get PDF
    The Japanese Murrelet Synthliboramphus wumizusume is a rare, globally ‘Vulnerable’ seabird, endemic to Japan and South Korea. However, little is known of its at-sea distribution, habitat or threats. We conducted several years of at-sea surveys around Japan to model Japanese Murrelet density in relation to habitat parameters, and make spatial predictions to assess the adequacy of the current Japanese marine Important Bird and Biodiversity Area (IBA) network for the species. During a five-year period, 3,485 km of at-sea surveys recorded 3,161 Japanese Murrelets around four breeding locations. Maximum murrelet group size was 90 individuals with a mean group size of 2.9 ± 4.2 individuals. Models of Japanese Murrelet at-sea density around the two largest breeding locations predicted that almost all murrelets occur within 30 km of the breeding colony and most within 10 km. Murrelets were predicted closer to the colony in May than in April and closer to the colony at a neritic colony than at an offshore island colony. Additionally, murrelets breeding on an offshore island colony also commuted to mainland neritic habitat for foraging. The marine habitat used by Japanese Murrelets differed between each of the four surveyed colonies, however oceanographic variables offered little explanatory power in models. Models with colony, month and year generated four foraging radii (9–39 km wide) containing murrelet densities of > 0.5 birds/km2. Using these radii the Japanese marine IBA network was found to capture between 95% and 25% of Japanese Murrelet at-sea habitat while breeding and appears appropriately configured to protect near-colony murrelet distributions. Given the range of marine habitats that breeding murrelets inhabit, our simple models offer an applicable method for predicting to unsampled colonies and generating ecologically-informed seaward extension radii. However, data on colony populations and further at-sea surveys are necessary to refine models and improve predictions

    Experimental Verification of the Gapless Point in the SS=1 Antiferromagnetic Bond Alternating Chain

    Full text link
    Susceptibility and high field magnetization measurements have been performed on powder samples of an SS=1 bond alternating chain compound [\{Ni(333-tet)(μ\mu-N3_3)\}n_n](ClO4_4)n_n (333-tet=tetraamine N,N'-bis(3-aminopropyl)-1,3-propanediamine). As the temperature is decreased, the susceptibility exhibits a round maximum at around 120 K and decreases gradually down to 10 K, and then falls down rapidly with a logarithmic curvature which is behavior of the susceptibility of a gapless or a nearly gapless antiferromagnetic chain. Magnetization up to 50 T at 1.4 K shows no or a very small gap in this compound. We have carried out numerical calculations for the SS=1 antiferromagnetic bond alternating chain with various alternating ratios α\alpha and obtained a very good agreement between experiments and calculations for α\alpha=0.6. We verify experimentally that the gapless point exists around α\alpha=0.6.Comment: 12 pages, 4 Postscript figures, uses REVTE

    Delta-Function Bose Gas Picture of S=1 Antiferromagnetic Quantum Spin Chains Near Critical Fields

    Full text link
    We study the zero-temperature magnetization curve (M-H curve) of the S=1 bilinear-biquadratic spin chain, whose Hamiltonian is given by H=iSiSi+1+β(SiSi+1)2withH=\sum_{i} S_i S_{i+1}+\beta (S_iS_{i+1})^2 with 0 \leq \beta <1.Wefocusonvalidityofthedeltafunctionbosegaspicturenearthetwocriticalfields:thesaturationfield. We focus on validity of the delta-function bose-gas picture near the two critical fields: the saturation field H_sandthelowercriticalfield and the lower critical field H_cassociatedwiththeHaldanegap.Near associated with the Haldane gap. Near H_s,wetakelowenergyeffectiveSmatrixapproach,whichgivescorrecteffectivebosegascouplingconstant, we take ``low-energy effective S-matrix'' approach, which gives correct effective bose-gas coupling constant c,differentfromthespinwavevalue.ComparingtheMHcurveofthebosegaswiththeproductwavefunctionrenormalizationgroup(PWFRG)calculation,excellentagreementisseen.Near, different from the spin-wave value. Comparing the M-H curve of the bose gas with the product-wavefunction renormalization group (PWFRG) calculation, excellent agreement is seen. Near H_c,comparingthePWFRGresultwiththebosegasprediction,wefindthattherearetwodistinctregionsof, comparing the PWFRG result with the bose-gas prediction, we find that there are two distinct regions of \betaseparatedbyacriticalvalue separated by a critical value \beta_c(\approx 0.41).Intheregion. In the region 0<\beta<\beta_c,theeffectivecoupling, the effective coupling cispositivebutrathersmall.Thesmallvalueof is positive but rather small. The small value of cmakesthecriticalregionofthesquarerootbehavior makes the ``critical region'' of the square-root behavior M\sim \sqrt{H-H_c}verynarrow.Further,wefindthatinthe very narrow. Further, we find that in the \beta \to \beta_c-0,thesquarerootbehaviortransmutestoadifferentone,, the square-root behavior transmutes to a different one, M\sim (H-H_c)^{1/4}.Intheregion. In the region \beta_c<\beta <1,thesquarerootbehaviorisratherdistinct,buttheeffectivecoupling, the square-root behavior is rather distinct, but the effective coupling c$ becomes negative.Comment: 6 pages, RevTeX, 8 ps figure

    Possible pseudogap behavior of electron doped high-temperature superconductors

    Full text link
    We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneling spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.Comment: 4 pages, 4 ps-figures included, to be published in Phys. Rev. B, Rapid Com
    corecore