9 research outputs found

    Drosophila lifespan control by dietary restriction independent of insulin-like signaling

    Get PDF
    Reduced insulin/insulin-like growth factor (IGF) signaling may be a natural way for the reduction of dietary nutrients to extend lifespan. While evidence challenging this hypothesis is accumulating with Caenorhabditis elegans, for Drosophila melanogaster it is still thought that insulin/IGF and the mechanisms of dietary restriction (DR) might as yet function through overlapping mechanisms. Here, we aim to understand this potential overlap. We found that over-expression of dFOXO in head fat body extends lifespan and reduces steady-state mRNA abundance of insulin-like peptide-2 under conditions of high dietary yeast, but not when yeast is limiting. In contrast, conditions of DR that increase lifespan change only insulin-like peptide-5 (ilp5) mRNA abundance. Thus, reduction of ilp5 mRNA is associated with longevity extension by DR, while reduction of insulin-like peptide-2 is associated with the diet-dependent effects of FOXO over-expression upon lifespan. To assess whether reduction of ilp5 is required for DR to extend lifespan, we blocked its diet-dependent change with RNAi. Loss of the ilp5 dietary response did not diminish the capacity of DR to extend lifespan. Finally, we assessed the capacity of DR to extend lifespan in the absence of dFOXO, the insulin/IGF-responsive transcription factor. As with the knockdown of ilp5 diet responsiveness, DR was equally effective among genotypes with and without dFOXO. It is clear from many Drosophila studies that insulin/IGF mediates growth and metabolic responses to nutrition, but we now find no evidence that this endocrine system mediates the interaction between dietary yeast and longevity extension

    Juvenile hormone regulation of Drosophila aging

    Get PDF
    Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging. Results: A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state. Conclusions: Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control of longevity simply based on reducing the physiological costs of egg production. Nor does the longevity benefit appear to function through mechanisms by which dietary restriction extends longevity. We identify transcripts that change in response to juvenile hormone independent of reproductive state and suggest these represent somatically expressed genes that could modulate how juvenile hormone controls persistence and longevity

    Hormonal regulation of the humoral innate immune response in Drosophila melanogaster

    Get PDF
    Juvenile hormone (JH) and 20-hydroxy-ecdysone (20E) are highly versatile hormones, coordinating development, growth, reproduction and aging in insects. Pulses of 20E provide key signals for initiating developmental and physiological transitions, while JH promotes or inhibits these signals in a stage-specific manner. Previous evidence suggests that JH and 20E might modulate innate immunity, but whether and how these hormones interact to regulate the immune response remains unclear. Here we show that JH and 20E have antagonistic effects on the induction of antimicrobial peptide (AMP) genes in Drosophila melanogaster. 20E pretreatment of Schneider S2* cells promoted the robust induction of AMP genes, following immune stimulation. On the other hand, JH III, and its synthetic analogs (JHa) methoprene and pyriproxyfen, strongly interfered with this 20E-dependent immune potentiation, although these hormones did not inhibit other 20E-induced cellular changes. Similarly, in vivo analyses in adult flies confirmed that JH is a hormonal immuno-suppressor. RNA silencing of either partner of the ecdysone receptor heterodimer (EcR or Usp) in S2* cells prevented the 20E-induced immune potentiation. In contrast, silencing methoprene-tolerant (Met), a candidate JH receptor, did not impair immuno- suppression by JH III and JHa, indicating that in this context MET is not a necessary JH receptor. Our results suggest that 20E and JH play major roles in the regulation of gene expression in response to immune challenge

    Hormonal regulation of the humoral innate immune response in Drosophila melanogaster

    Get PDF
    Juvenile hormone (JH) and 20-hydroxy-ecdysone (20E) are highly versatile hormones, coordinating development, growth, reproduction and aging in insects. Pulses of 20E provide key signals for initiating developmental and physiological transitions, while JH promotes or inhibits these signals in a stage-specific manner. Previous evidence suggests that JH and 20E might modulate innate immunity, but whether and how these hormones interact to regulate the immune response remains unclear. Here we show that JH and 20E have antagonistic effects on the induction of antimicrobial peptide (AMP) genes in Drosophila melanogaster. 20E pretreatment of Schneider S2 cells promoted the robust induction of AMP genes, following immune stimulation. On the other hand, JH III, and its synthetic analogs (JHa) methoprene and pyriproxyfen, strongly interfered with this 20E-dependent immune potentiation, although these hormones did not inhibit other 20E-induced cellular changes. Similarly, in vivo analyses in adult flies confirmed that JH is a hormonal immuno-suppressor. RNA silencing of either partner of the ecdysone receptor heterodimer (EcR or Usp) in S2 cells prevented the 20E-induced immune potentiation. In contrast, silencing methoprene-tolerant (Met), a candidate JH receptor, did not impair immuno-suppression by JH III and JHa, indicating that in this context MET is not a necessary JH receptor. Our results suggest that 20E and JH play major roles in the regulation of gene expression in response to immune challenge

    Comer ou não comer, eis a questão: diferenças de gênero na neofobia alimentar Eating or not eating, that's the question: gender differences on food neophobia

    No full text
    A neofobia alimentar é um comportamento de cautela quanto à ingestão de alimentos desconhecidos. Homens e mulheres apresentam diferenças comportamentais, embora as pesquisas sobre a resposta neofóbica apontem controvérsias. Neste estudo, 266 indivíduos realizaram uma tarefa de escolha entre dois alimentos, um familiar e outro não-familiar, e responderam a uma escala de neofobia, a fim de investigar as diferenças de gênero. Os resultados indicaram que as mulheres são mais neofóbicas que os homens, o que corrobora os dados anteriores sobre o comportamento alimentar e pode estar relacionado ao papel feminino de seleção e preparo do alimento no âmbito familiar.<br>Feeding neophobia represents a cautious behavior towards unknown food. Although men and women show behavioral differences, relating feeding neophobia data on neophobic response are controversial. In this study, in order to investigating gender differences, 266 individuals were tested on a two food choosing task between a familiar and an unfamiliar food items, and also were required to fill in a food neophobia scale. Results indicate that women are more neophobic than men confirming previous research data on feeding behavior. This might be related to females' role to selecting and preparing food in the family context
    corecore