262 research outputs found

    Field-induced carrier delocalization in the strain-induced Mott insulating state of an organic superconductor

    Full text link
    We report the influence of the field effect on the dc resistance and Hall coefficient in the strain-induced Mott insulating state of an organic superconductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br. Conductivity obeys the formula for activated transport σ=σ0exp(W/kBT)\sigma_{\Box} = \sigma_{0}\exp(-W/k_{B}T), where σ0\sigma_{0} is a constant and WW depends on the gate voltage. The gate voltage dependence of the Hall coefficient shows that, unlike in conventional FETs, the effective mobility of dense hole carriers (1.6×1014\sim1.6\times 10^{14} cm2^{-2}) is enhanced by a positive gate voltage. This implies that carrier doping involves delocalization of intrinsic carriers that were initially localized due to electron correlation.Comment: 5 pages, 3 figure

    Characterization of histopathology and gene-expression profiles of synovitis in early rheumatoid arthritis using targeted biopsy specimens

    Get PDF
    The disease category of early rheumatoid arthritis (RA) has been limited with respect to clinical criteria. Pathological manifestations of synovitis in patients whose disease is clinically classified as early RA seem to be heterogeneous, with regular variations. To clarify the relation between the molecular and histopathological features of the synovitis, we analyzed gene-expression profiles in the synovial lining tissues to correlate them with histopathological features. Synovial tissues were obtained from knee joints of 12 patients with early RA by targeted biopsy under arthroscopy. Surgical specimens of long-standing RA (from four patients) were examined as positive controls. Each histopathological parameter characteristic of rheumatoid synovitis in synovial tissues was scored under light microscopy. Total RNAs from synovial lining tissues were obtained from the specimens selected by laser capture microdissection and the mRNAs were amplified by bacteriophage T7 RNA polymerase. Their cDNAs were analyzed in a cDNA microarray with 23,040 cDNAs, and the levels of gene expression in multilayered lining tissues, compared with those of normal-like lining tissues in specimens from the same person, were determined to estimate gene-expression profiles characteristic of the synovial proliferative lesions in each case. Based on cluster analysis of all cases, gene-expression profiles in the lesions in early RA fell into two groups. The groups had different expression levels of genes critical for proliferative inflammation, including those encoding cytokines, adhesion molecules, and extracellular matrices. One group resembled synovitis in long-standing RA and had high scores for some histopathological features – involving accumulations of lymphocytes and plasma cells – but not for other features. Possible differences in the histopathogenesis and prognosis of synovitis between the two groups are discussed in relation to the candidate genes and histopathology

    Detection of vegetation drying signals using diurnal variation of land surface temperature: Application to the 2018 East Asia heatwave

    Get PDF
    Satellite-based vegetation monitoring provides important insights regarding spatiotemporal variations in vegetation growth from a regional to continental scale. Most current vegetation monitoring methodologies rely on spectral vegetation indices (VIs) observed by polar-orbiting satellites, which provide one or a few observations per day. This study proposes a new methodology based on diurnal changes in land surface temperatures (LSTs) using Japan's geostationary satellite, Himawari-8/Advanced Himawari Imager (AHI). AHI thermal infrared observation provides LSTs at 10-min frequencies and ∼ 2 km spatial resolution. The DTC parameters that summarize the diurnal cycle waveform were obtained by fitting a diurnal temperature cycle (DTC) model to the time-series LST information for each day. To clarify the applicability of DTC parameters in detecting vegetation drying under humid climates, DTC parameters from in situ LSTs observed at vegetation sites, as well as those from Himawari-8 LSTs, were evaluated for East Asia. Utilizing the record-breaking heat wave that occurred in East Asia in 2018 as a case study, the anomalies of DTC parameters from the Himawari-8 LSTs were compared with the drying signals indicated by VIs, latent heat fluxes (LE), and surface soil moisture (SM). The results of site-based and satellite-based analyses revealed that DTR (diurnal temperature range) correlates with the evaporative fraction (EF) and SM, whereas Tmax (daily maximum LST) correlates with LE and VIs. Regarding other temperature-related parameters, T0 (LST around sunrise), Ta (temperature rise during daytime), and δT (temperature fall during nighttime) are unstable in quantification by DTC model. Moreover, time-related parameters, such as tm (time reaching Tmax), are more sensitive to topographic slope and geometric conditions than surface thermal properties at humid sites in East Asia, although they correlate with EF and SM at a semi-arid site in Australia. Additionally, the spatial distribution of the DTR anomaly during the 2018 heat wave corresponds with the drying signals indicated as negative SM anomalies. Regions with large positive anomalies in Tmax and DTR correspond to area with visible damage to vegetation, as indicated by negative VI anomalies. Hence, combined Tmax and DTR potentially detects vegetation drying indetectable by VIs, thereby providing earlier and more detailed vegetation monitoring in both humid and semi-arid climates

    2-Methylthio Conversion of N6-Isopentenyladenosine in Mitochondrial tRNAs by CDK5RAP1 Promotes the Maintenance of Glioma-Initiating Cells

    Get PDF
    2-Methylthio-N-6-isopentenyl modification of adenosine (ms(2)i(6)A) is an evolutionally conserved modification found in mitochondrial (mt)-tRNAs. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) specifically converts N6-isopentenyladenosine (i(6)A) to ms(2)i(6)A at position A37 of four mt-DNA-encoded tRNAs, and the modification regulates efficient mitochondrial translation and energy metabolism in mammals. Here, we report that the ms 2 conversion mediated by CDK5RAP1 in mt-tRNAs is required to sustain glioma-initiating cell (GIC)-related traits. CDK5RAP1 maintained the self-renewal capacity, undifferentiated state, and tumorigenic potential of GICs. This regulation was not related to the translational control of mt-proteins. CDK5RAP1 abrogated the antitumor effect of i(6)A by converting i(6)A to ms (2)i(6) A and protected GICs from excessive autophagy triggered by i(6)A. The elevated activity of CDK5RAP1 contributed to the amelioration of the tumor-suppressive effect of i(6)A and promoted GIC maintenance. This work demonstrates that CDK5RAP1 is crucial for the detoxification of endogenous i(6)A and that GICs readily utilize this mechanism for survival

    Infection of human CD4+ rabbit cells with HIV-1 the possibility of the rabbit as a model for HIV-1 infection

    Get PDF
    Although human T cell surface glycoprotein CD4 is the cellular receptor for human immunodeficiency virus 1 (HIV-1), the introduction of the human CD4 gene into murine cells does not render them susceptible to HIV-1 infection. Here we have established rabbit transfectant cell lines expressing human CD4 on the cell surface and demonstrated that the CD4+ rabbit transfectants could be readily infected by HIV-1 by co-cultivating with a HIV-1-infected human MOLT-4 T cell line (MOLT-4/HIV). Avid syncytia formation was observed upon co-cultivation and the syncytia abundantly produced HIV-1 mature particles, as revealed by electron microscopy. A significant increase of HIV-1 p24 antigen was also detected in the culture supernatant. The syncytia formation was blocked by pretreating the transfectant with anti-human CD4 or by pretreating the MOLT-4/HIV with anti-HIV-1 serum obtained from an infected individual, indicating that the syncytia formed as a result of the interaction of human CD4 on the rabbit transfectant with the HIV-1 envelope protein expressed on MOLT-4/HIV. In contrast, only a very small proportion of the rabbit transfectants expressed HIV-1-specific antigens upon infection with an HIV-1 stock. This may indicate that, although rabbit cells have partially acquired susceptibility to HIV-1 by transfection of human CD4 gene, rabbit cells may further require such a molecule as might be provided by MOLT-4 to become fully susceptible to HIV-1 infection. The possibility of the rabbit as a model for HIV-1 infection is also discusse
    corecore