578 research outputs found

    Silybin from Silybum Marianum Seeds Inhibits Confluent-Induced Keratinocytes Differentiation as Effectively as Retinoic Acid without Inducing Inflammatory Cytokine

    Get PDF
    Retinoic acid (RA) has been effective for improving wrinkles. However, it has also been reported that RA induces skin irritation. In this study, we explored new botanical compounds that show RA-like activity, but do not induce inflammation in vitro. Keratinocytes were maintained in a confluent condition and induced differentiation. Under this condition keratinocytes were treated with many botanical extracts and their morphological change were observed and compared with RA-treated. We found that silybin, which is a major flavonolignan from Silybum Marianum seeds, induced RA-like morphological change and prevented differentiation. We showed that silybin, like RA, reduced the expression of keratinocyte terminal differentiation markers and stimulated the expression of basement membrane component proteins. In contrast, silybin, unlike RA, did not stimulate the secretion of IL-1α, which is a skin irritation mediator. These results suggest that silybin has RA-like activity on keratinocytes and has the potential to improve winkle without inducing skin irritation

    Acute osteomyelitis of the acetabulum induced by Staphylococcus capitis in a young athlete

    Get PDF
    Acute hematogenous osteomyelitis (AHOM) of the acetabulum is a rare condition in children and usually caused by Staphylococcus aureus. We present an 11-year-old soccer athlete who suffered from acute osteomyelitis involving the acetabulum caused by S. capitis, a normal flora of the human skin but never reported in this condition. The disease was associated with repetitive skin injuries of the knee and potential osseous microtrauma of the hip joint by frequent rigorous exercise. This unusual case suggests that osseous microtrauma of the acetabulum, in addition to repetitive skin injuries, allowed normal skin flora to colonize to the ipsilateral acetabulum, which served as a favorable niche and subsequently led to AHOM

    Multi-Cycle Test with Partial Observation on Scan-Based BIST Structure

    Get PDF
    Field test for reliability is usually performed with small amount of memory resource, and it requires a new technique which might be somewhat different from the conventional manufacturing tests. This paper proposes a novel technique that improves fault coverage or reduces the number of test vectors that is needed for achieving the given fault coverage on scan-based BIST structure. We evaluate a multi-cycle test method that observes the values of partial flip-flops on a chip during capture-mode. The experimental result shows that the partial observation achieves fault coverage improvement with small hardware overhead than the full observation.2011 Asian Test Symposium (ATS), 20-23 Nov. 2011, New Delhi, Indi

    Pose Estimation for Human Wearing Loose-Fitting Clothes: Obtaining Ground Truth Posture Using HFR Camera and Blinking LEDs

    Full text link
    Human pose estimation, particularly in athletes, can help improve their performance. However, this estimation is difficult using existing methods, such as human annotation, if the subjects wear loose-fitting clothes such as ski/snowboard wears. This study developed a method for obtaining the ground truth data on two-dimensional (2D) poses of a human wearing loose-fitting clothes. This method uses fast-flushing light-emitting diodes (LEDs). The subjects were required to wear loose-fitting clothes and place the LED on the target joints. The LEDs were observed directly using a camera by selecting thin filmy loose-fitting clothes. The proposed method captures the scene at 240 fps by using a high-frame-rate camera and renders two 30 fps image sequences by extracting LED-on and -off frames. The temporal differences between the two video sequences can be ignored, considering the speed of human motion. The LED-on video was used to manually annotate the joints and thus obtain the ground truth data. Additionally, the LED-off video, equivalent to a standard video at 30 fps, confirmed the accuracy of existing machine learning-based methods and manual annotations. Experiments demonstrated that the proposed method can obtain ground truth data for standard RGB videos. Further, it was revealed that neither manual annotation nor the state-of-the-art pose estimator obtains the correct position of target joints.Comment: Extended abstract of WACV2023 workshop on Computer Vision 4 Winter Sport

    Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells

    Get PDF
    Internal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression

    Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    Get PDF
    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy

    Molecular characterization of the β chain of the murine interleukin 5 receptor

    Get PDF
    Interleukin 5 (IL-5) is a multifunctional cytokine that regulates the proliferation and differentiation of hematopoietlc cells Including B cells and eosinophlls. The murine IL-5 acts on target cells via an IL-5 specific high-affinity receptor (Kd ≃ 150 pM) that has been proposed to be composed of at least two membrane polypeptide chains. The p60 component recognized by anti-murine IL-5 receptor mAbs H7 and T21 binds IL-5 with low affinity (Kd ≃ 10 nM). The other component is p130, detectable by following cross-linking experiments with IL-5. Using H7, T21, and R52.120 mAbs specific to murine IL-5 receptor, we characterized the molecular nature of the p130 of the high affinity receptor for murine IL-5. R52.120 mAb did not recognize the IL-5 binding recombinant p60 expressed on COS7 cells, but reacted with p130/140 on IL-5-dependent cell lines. R52.120 mAb showed partial inhibition of the IL-5-induced proliferation of the IL-5-dependent early B cell line Y16 at high IL-5 concentrations. Addition of R52.120 mAb together with H7 or T21 mAb caused more striking inhibition of the IL-5-dependent proliferation than that caused by either of them alone. R52.120 mAb down-regulated the number and dissociation constant of IL-5 binding sites with high affinity without affecting the levels of these with low-affinity. It also preferentially inhibited the formation of the cross-linked complex of p130 with radlolabeledIL-5. These results Indicate that p130/p140, recognized by R52.120 mAb, Is indispensable, together with p60, for the formation of high affinity IL-5 receptor. We propose to designate p60 and p130/p140 as the α and β chain of IL-5 receptor, respectivel

    Conferring Antioxidant Activity to an Antibacterial and Bioactive Titanium Surface through the Grafting of a Natural Extract

    Get PDF
    The main unmet medical need of bone implants is multifunctional activity, including their ability to induce rapid and physiological osseointegration, counteract bacterial biofilm formation, and prevent in situ chronic inflammation at the same time. This research starts from an already developed c.p. titanium surface with proven bioactive (in vitro hydroxyl apatite precipitation) and antibacterial activities, due to a calcium titanate layer with nano- and micro-scale roughness and loaded with iodine ions. Here, antioxidant ability was added to prevent chronic inflammation by grafting polyphenols of a green tea extract onto the surface, without compromising the other functionalities of the surface. The surface was characterized before and after functionalization through XPS analysis, zeta potential titrations, ion release measurements, in vitro bioactivity tests, SEM and fluorescence microscopy, and Folin–Ciocalteu and biological tests. The presence of grafted polyphenols as a homogeneous layer was proven. The grafted polyphenols maintained their antioxidant ability and were anchored to the surface through the linking action of Ca2+ ions added to the functionalizing solution. Iodine ion release, cytocompatibility towards human mesenchymal stem cells (hMSC), and antibacterial activity were maintained even after functionalization. The antioxidant ability of the functionalized surface was effective in preserving hMSC viability in a chemically induced pro-inflammatory environment, thus showing a scavenger activity towards toxic active species responsible for inflammation
    corecore