31 research outputs found

    Electroconvulsive Therapy Modulates Resting-State EEG Oscillatory Pattern and Phase Synchronization in Nodes of the Default Mode Network in Patients With Depressive Disorder

    Get PDF
    Introduction: Electroconvulsive therapy (ECT) has antidepressant effects, but it also has possible cognitive side effects. The effects of ECT on neuronal oscillatory pattern and phase synchronization, and the relationship between clinical response or cognitive change and electroencephalogram (EEG) measurements remain elusive.Methods: Individuals with unipolar depressive disorder receiving bilateral ECT were recruited. Five minutes of resting, eyes-closed, 19-lead EEG recordings were obtained before and after a course of ECT. Non-overlapping 60 artifact-free epocs of 2-s duration were used for the analyses. We used exact low resolution electromagnetic tomography (eLORETA) to compute the whole-brain three-dimensional intracortical distribution of current source density (CSD) and phase synchronization among 28 regions-of-interest (ROIs). Paired t-tests were used to identify cortical voxels and connectivities showing changes after ECT. Montgomery Asberg Depression Rating Scale (MADRS) and Mini-Mental State Examination (MMSE) were used to evaluate the severity of depression and the global cognitive function. Correlation analyses were conducted to identify the relationship between changes in the EEG measurements and changes in MADRS or MMSE.Results: Thirteen depressed patients (five females, mean age: 58.4 years old) were included. ECT increased theta CSD in the anterior cingulate cortex (ACC), and decreased beta CSD in the frontal pole (FP), and gamma CSD in the inferior parietal lobule (IPL). ECT increased theta phase synchronization between the posterior cingulate cortex (PCC) and the anterior frontal cortex, and decreased beta phase synchronization between the PCC and temporal regions. A decline in beta synchronization in the left hemisphere was associated with cognitive changes after ECT.Conclusion: ECT modulated resting-state EEG oscillatory patterns and phase synchronization in central nodes of the default mode network (DMN). Changes in beta synchronization in the left hemisphere might explain the ECT-related cognitive side effects

    Aberrant Anterior Thalamic Radiation Structure in Bipolar Disorder: A Diffusion Tensor Tractography Study

    Get PDF
    Disrupted white matter (WM) integrity in the anterior thalamic radiation (ATR) has been identified in individuals with bipolar disorder (BD). We explored whether structural WM aberration in the ATR could be visually evaluated by diffusion tensor tractography (DTT). The study comprised 114 participants, including 57 patients with BD and 57 healthy controls (HCs). A poorly visualized ATR reflects an abnormal WM structure. We defined a poorly visualized ATR as one in which at least one ATR fiber bundle failed to reach to the boundary between gray and white matter. Poor ATR visualization occurred significantly more frequently in the left ATR of those with BD than in HCs (P = 0.042). Furthermore, we adjusted the fractional anisotropy (FA) value and when evaluation of a given ATR changed from good to poor, we defined that value as the optimal FA threshold. In the right ATR, we successfully classified BD and HCs with 71.1% accuracy (sensitivity = 89.5% and specificity = 52.6%) and an area under the curve of 0.76 using the optimal FA threshold of 0.28. The present results suggest that the optimal FA threshold can serve as a biological marker that distinguishes individuals with BD from HCs. Thus, visual evaluation of the ATR by DTT may prove to be a useful adjunctive diagnostic tool for BD in clinical practice

    CNVs in Three Psychiatric Disorders

    Get PDF
    BACKGROUND: We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS: Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS: In genic CNVs, we found an increased burden of smaller (500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25–0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS: BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD

    Aberrant Spatial and Temporal Prefrontal Activation Patterns in Medication-Naïve Adults with ADHD

    No full text
    Previous near-infrared spectroscopy (NIRS) studies using a verbal fluency task (VFT) have consistently reported that adults with attention-deficit hyperactivity disorder (ADHD) showed significantly smaller oxygenated-hemoglobin [oxy-Hb] activations in the prefrontal cortex (PFC) compared to those in healthy controls (HC). Despite this consistent evidence of brain dysfunction in ADHD, ADHD is currently diagnosed based only on subjective clinical and scoring measures, which are often unreliable. Hence, it is necessary to establish objective neuroimaging biomarkers for ADHD. While most NIRS studies have utilized averaged [oxy-Hb] values during the whole task period for group comparisons, we used a cluster-based non-parametric randomization test to compare the [oxy-Hb] time-course changes with a 0.1-s time resolution between drug-naïve adults with ADHD and HC, which may provide us with more details regarding abnormal prefrontal activation patterns in ADHD. A total of 101 participants, consisting of 63 drug-naïve adult individuals with ADHD and 38 HC, were included in this study. We identified that adults with ADHD showed significantly smaller [oxy-Hb] activations than those in HC at spatially and temporally connected clusters located in the bilateral PFC (more prominent on the left) and temporal brain region (more prominent on the left). We further found that aberrant [oxy-Hb] activation differs according to the time period during the task or according to brain location. Our findings indicate more detailed aberrant prefrontal and temporal activation patterns of ADHD compared with those in previous studies, possibly representing a biological marker for ADHD

    Effect of parietal transcranial magnetic stimulation on spatial working memory in healthy elderly persons--comparison of near infrared spectroscopy for young and elderly.

    No full text
    In a previous study, we succeeded in improving the spatial working memory (WM) performance in healthy young persons by applying transcranial magnetic stimulation (TMS) to the parietal cortex and simultaneously measuring the oxygenated hemoglobin (oxy-Hb) level using near-infrared spectroscopy (NIRS). Since an improvement in WM was observed when TMS was applied to the right parietal cortex, the oxy-Hb distribution seemed to support a model of hemispheric asymmetry (HA). In the present study, we used the same study design to evaluate healthy elderly persons and investigated the effect of TMS on WM performance in the elderly, comparing the results with those previously obtained from young persons. The application of TMS did not affect WM performance (both reaction time and accuracy) of 38 elderly participants (mean age = 72.5 years old). To investigate the reason for this result, we conducted a three-way ANOVA examining oxy-Hb in both young and elderly participants. For the right parietal TMS site in the elderly, TMS significantly decreased the oxy-Hb level during WM performance; this result was the opposite of that observed in young participants. An additional three-way ANOVA was conducted for each of the 52 channels, and a P value distribution map was created. The P value maps for the young participants showed a clearly localized TMS effect for both the WM and control task, whereas the P map for the elderly participants showed less significant channels and localization. Further analysis following the time course revealed that right-side parietal TMS had almost no effect on the frontal cortex in the elderly participants. This result can most likely be explained by age-related differences in HA arising from the over-recruitment of oxy-Hb, differentiation in the parietal cortex, and age-related alterations of the frontal-parietal networks

    A longitudinal functional neuroimaging study in medication-naïve depression after antidepressant treatment.

    No full text
    Recent studies have indicated the potential clinical use of near infrared spectroscopy (NIRS) as a tool in assisting the diagnosis of major depressive disorder (MDD); however, it is still unclear whether NIRS signal changes during cognitive task are state- or trait-dependent, and whether NIRS could be a neural predictor of treatment response. Therefore, we conducted a longitudinal study to explore frontal haemodynamic changes following antidepressant treatment in medication-naïve MDD using 52-channel NIRS. This study included 25 medication-naïve individuals with MDD and 62 healthy controls (HC). We performed NIRS scans before and after antidepressant treatment and measured changes of [oxy-Hb] activation during a verbal fluency task (VFT) following treatment. Individuals with MDD showed significantly decreased [oxy-Hb] values during a VFT compared with HC in the bilateral frontal and temporal cortices at baseline. There were no [oxy-Hb] changes between pre- and post-antidepressant treatment time points in the MDD cohort despite significant improvement in depressive symptoms. There was a significant association between mean [oxy-Hb] values during a VFT at baseline and improvement in depressive symptoms following treatment in the bilateral inferior frontal and middle temporal gyri in MDD. These findings suggest that hypofrontality response to a VFT may represent a potential trait marker for depression rather than a state marker. Moreover, the correlation analysis indicates that the NIRS signals before the initiation of treatment may be a biological marker to predict patient's clinical response to antidepressant treatment. The present study provides further evidence to support a potential application of NIRS for the diagnosis and treatment of depression

    White matter aberrations in prepubertal estrogen-naive girls with monosomic Turner syndrome.

    No full text
    Turner syndrome (TS) offers a unique opportunity to investigate associations among genes, the brain, and cognitive phenotypes. In this study, we used 3 complementary analyses of diffusion tensor imaging (DTI) data (whole brain, region of interest, and fiber tractography) and a whole brain volumetric imaging technique to investigate white matter (WM) structure in prepubertal, nonmosaic, estrogen-naive girls with TS compared with age and sex matched typically developing controls. The TS group demonstrated significant WM aberrations in brain regions implicated in visuospatial abilities, face processing, and sensorimotor and social abilities compared with controls. Extensive spatial overlap between regions of aberrant WM structure (from DTI) and regions of aberrant WM volume were observed in TS. Our findings indicate that complete absence of an X chromosome in young females (prior to receiving exogenous estrogen) is associated with WM aberrations in specific regions implicated in characteristic cognitive features of TS
    corecore