21,033 research outputs found

    Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension

    Get PDF
    A repulsive-type magnetic bearing system has been fabricated in which the rotor of a vertical-shaft-type motor is levitated due to the repulsive force between two sets of permanent magnets. A novel arrangement of permanent magnets has been reported here, which has made the suspension of the rotor possible. The system is planned to be applied for pumping milks and other related products in the New Zealand dairy industry

    Quantum shutter approach to tunneling time scales with wave packets

    Full text link
    The quantum shutter approach to tunneling time scales (G. Garc\'{\i }a-Calder\'{o}n and A. Rubio, Phys. Rev. A \textbf{55}, 3361 (1997)), which uses a cutoff plane wave as the initial condition, is extended in such a way that a certain type of wave packet can be used as the initial condition. An analytical expression for the time evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to the width of the packet when the transmission process is in the tunneling regime.Comment: 6 page

    Spin-Torque-Induced Rotational Dynamics of a Magnetic Vortex Dipole

    Full text link
    We study, both experimentally and by numerical modeling, the magnetic dynamics that can be excited in a magnetic thin-film nanopillar device using the spin torque from a spatially localized current injected via a 10s-of-nm-diameter aperture. The current-driven magnetic dynamics can produce large amplitude microwave emission at zero magnetic field, with a frequency well below that of the uniform ferromagnetic resonance mode. Micromagnetic simulations indicate that the physical origin of this efficient microwave nano-oscillator is the nucleation and subsequent steady-state rotational dynamics of a magnetic vortex dipole driven by the localized spin torque. These results show this novel implementation of a spintronic nano-oscillator is a promising candidate for microwave technology applications.Comment: 19 pages, 4 figures

    Scattering Rule in Soliton Cellular Automaton associated with Crystal Base of Uq(D4(3))U_q(D_4^{(3)})

    Full text link
    In terms of the crystal base of a quantum affine algebra Uq(g)U_q(\mathfrak{g}), we study a soliton cellular automaton (SCA) associated with the exceptional affine Lie algebra g=D4(3)\mathfrak{g}=D_4^{(3)}. The solitons therein are labeled by the crystals of quantum affine algebra Uq(A1(1))U_q(A_1^{(1)}). The scatteing rule is identified with the combinatorial RR matrix for Uq(A1(1))U_q(A_1^{(1)})-crystals. Remarkably, the phase shifts in our SCA are given by {\em 3-times} of those in the well-known box-ball system.Comment: 25 page

    Heavy-light decay constants using clover valence quarks and three flavors of dynamical improved staggered quarks

    Full text link
    Starting in 2001, the MILC Collaboration began a large scale calculation of heavy-light meson decay constants using clover valence quarks on ensembles of three flavor configurations. For the coarse configurations, with a=0.12 fm, eight combinations of dynamical light and strange quarks have been analyzed. For the fine configurations, with a=0.09 fm, three combinations of quark masses are studied. Since we last reported on this calculation, statistics have been increased on the fine ensembles, and, more importantly, a preliminary value for the perturbative renormalization of the axial-vector current has become available. Thus, results for f_B, f_{B_s}, f_D and f_{D_s} can, in principle, be calculated in MeV, in addition to decay-constant ratios that were calculated previously.Comment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26, 2004; 3 pages, 3 color figure

    Time-reversible Dynamical Systems for Turbulence

    Full text link
    Dynamical Ensemble Equivalence between hydrodynamic dissipative equations and suitable time-reversible dynamical systems has been investigated in a class of dynamical systems for turbulence. The reversible dynamics is obtained from the original dissipative equations by imposing a global constraint. We find that, by increasing the input energy, the system changes from an equilibrium state to a non-equilibrium stationary state in which an energy cascade, with the same statistical properties of the original system, is clearly detected.Comment: 16 pages Latex, 4 PS figures, on press on J. Phy

    Nearly Instantaneous Alternatives in Quantum Mechanics

    Get PDF
    Usual quantum mechanics predicts probabilities for the outcomes of measurements carried out at definite moments of time. However, realistic measurements do not take place in an instant, but are extended over a period of time. The assumption of instantaneous alternatives in usual quantum mechanics is an approximation whose validity can be investigated in the generalized quantum mechanics of closed systems in which probabilities are predicted for spacetime alternatives that extend over time. In this paper we investigate how alternatives extended over time reduce to the usual instantaneous alternatives in a simple model in non-relativistic quantum mechanics. Specifically, we show how the decoherence of a particular set of spacetime alternatives becomes automatic as the time over which they extend approaches zero and estimate how large this time can be before the interference between the alternatives becomes non-negligible. These results suggest that the time scale over which coarse grainings of such quantities as the center of mass position of a massive body may be extended in time before producing significant interference is much longer than characteristic dynamical time scales.Comment: 12 pages, harvmac, no figure

    B Physics on the Lattice: Present and Future

    Get PDF
    Recent experimental measurements and lattice QCD calculations are now reaching the precision (and accuracy) needed to over-constrain the CKM parameters ρˉ\bar\rho and ηˉ\bar\eta. In this brief review, I discuss the current status of lattice QCD calculations needed to connect the experimental measurements of BB meson properties to quark flavor-changing parameters. Special attention is given to BπνB\to\pi\ell\nu, which is becoming a competitive way to determine Vub|V_{ub}|, and to B0B0ˉB^0-\bar{B^0} mixings, which now include reliable extrapolation to the physical light quark mass. The combination of the recent measurement of the BsB_s mass difference and current lattice calculations dramatically reduces the uncertainty in Vtd|V_{td}|. I present an outlook for reducing dominant lattice QCD uncertainties entering CKM fits, and I remark on lattice calculations for other decay channels.Comment: Invited brief review for Mod. Phys. Lett. A. 15 pages. v2: typos corrected, references adde

    Surface tension in a compressible liquid-drop model: Effects on nuclear density and neutron skin thickness

    Full text link
    We examine whether or not the surface tension acts to increase the nucleon density in the nuclear interior within a compressible liquid-drop model. We find that it depends on the density dependence of the surface tension, which may in turn be deduced from the neutron skin thickness of stable nuclei.Comment: 4 pages, 1 figure, to be published in Physical Review

    Two-particle renormalizations in many-fermion perturbation theory: Importance of the Ward identity

    Full text link
    We analyze two-particle renormalizations within many-fermion perturbation expansion. We show that present diagrammatic theories suffer from lack of a direct diagrammatic control over the physical two-particle functions. To rectify this we introduce and prove a Ward identity enabling an explicit construction of the self-energy from a given two-particle irreducible vertex. Approximations constructed in this way are causal, obey conservation laws and offer an explicit diagrammatic control of singularities in dynamical two-particle functions.Comment: REVTeX4, 4 pages, 2 EPS figure
    corecore