509 research outputs found

    Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study

    Get PDF
    AbstractThe effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21mScm−1 of electrical conductivity (EC) did not affect waste degradation, but a salt concentration of 35mScm−1 of EC inhibited CH4 generation. A higher salt concentration of 80mScm−1 of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation

    Tweet Extraction for News Production Considering Unreality

    Get PDF

    A New Microarray System to Detect Streptococcus pneumoniae Serotypes

    Get PDF
    Streptococcus pneumoniae, one of the most common gram-positive pathogens to colonize the human upper respiratory tract, is responsible for many severe infections, including meningitis and bacteremia. A 23-valent pneumococcal vaccine is available to protect against the 23 S. pneumoniae serotypes responsible for 90% of reported bacteremic infections. Unfortunately, current S. pneumoniae serotype testing requires a large panel of expensive antisera, assay results may be subjective, and serotype cross-reactions are common. For this study, we designed an oligonucleotide-based DNA microarray to identify glycosyltransferase gene sequences specific to each vaccine-related serotype. Out of 56 isolates representing different serotypes, only one isolate, representing serotype 23A, was not detected correctly as it could not be distinguished from serotype 23F. Our data suggest that the microarray provides a more cost-effective and reliable way of monitoring pneumococcal capsular types

    MOIRCS Deep Survey. VII: NIR Morphologies of Star-forming Galaxies at Redshift z~1

    Full text link
    We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared Galaxies (LIRGs), which dominate high star formation rate (SFR) density at z~1, in the sample identified by cross-correlating with the Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3 x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a maximum in size compared to local disk-like galaxies in the same stellar mass range. If we examine rest-frame UV-optical morphologies using the HST/ACS images, the rest-frame B-band sizes of the z~1 disk-like galaxies are comparable to those of the local disk-like galaxies as reported by previous studies on size evolution of disk-like galaxies in the rest-frame optical band. Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1 and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5 times steeper color gradient than the local ones. Our results indicate that (i) more than a half of relatively massive disk-like galaxies at z~1 are in violent star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are constructing their fundamental disk structure vigorously. The high SFR density in the universe at z~1 may be dominated by such star formation in disk region in massive galaxies.Comment: 16 pages, 15 figures, accepted for publication in PASJ. Catalog data will be available at http://astr.tohoku.ac.jp/MODS/wiki/index.php soo
    corecore