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Abstract

Tricholoma matsutake is a commercially important edible ectomycorrhizal mushroom. The 

ecology of this species has emerged from studies of the genetic background of mycelial 

colonies in nature. Single putative colonies sometimes comprise several genets. This complex 

mycelial structure should be subjected to analysis to determine its ecophysiological 

significance. We tested the ectomycorrhization ability of nine T. matsutake sibling spore 

isolates. The ectomycorrhizal colonization ratio differed significantly among isolates, and was 

dependent on the soil nitrogen content. Mixed inoculations of three selected isolates into soils 

in which single pine seedlings were grown showed that the isolates interacted in the seedling 

roots. Paired inoculations of isolates #52/#99 and #52/#84, and a triple inoculation of isolates 

#52/#84/#99 resulted in levels of ectomycorrhizal colonization that significantly exceeded the 

colonization levels following single isolate inoculation. We suggest that mycelial interaction 

between sibling isolates is a significant phenomenon that operates within individual 

ectomycorrhizal pine root tips.

Keywords: Agaricomycotina; Competition; Ectomycorrhizal symbiosis; Fungus-plant 

interaction; Genetic diversity; Mutualism; Non-timber forest resources; Shiro structure; Soil 

microbial ecology; Wild edible mushrooms
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1. Introduction

Tricholoma matsutake is one of the most commercially valuable wild edible ectomycorrhizal 

mushrooms. The Japanese colloquial name for this species and its taxonomic relatives is 

“matsutake” (Turdell et al., 2017; Vaario et al. 2017). Tricholoma matsutake is associated 

with Pinus densiflora and several other coniferous species in Far Eastern Asia, with Pinus 

yunnanensis and several other coniferous and fagaceous species at the foot of the Tibetan 

Plateau, and with Pinus sylvestris in Northern Europe (Vaario et al., 2010, 2017; Yamada et 

al., 2010; Endo et al., 2015). The market price of this mushroom in Japan is ca. 200–500 

USD/kg. However, the domestic harvest has continuously declined over the past 80 y, as a 

result of social, economic, and ecological changes in Japan after World War II (Ogawa, 1978; 

Saito and Mitsumata, 2008). Most P. densiflora forests in lowland areas were cultivated or 

secondarily established, and were maintained by the local human populations for diverse uses. 

As this way of life declined after World War II, many of the pine forests, including those that 

produced matsutake, were abandoned. Pine forest management for T. matsutake production 

can be successful when previous practices are implemented over a decadal time frame 

(Ogawa, 1978; Furukawa et al., 2016). Although appropriate forest management practices 

have been in place in diverse geographic regions over several recent decades (The Matsutake 

Research Association, 1964; Ogawa, 1978; Iwase and Ito, 1997), the harvest of matsutake in 

many previously productive sites has declined to zero since the 1970s due to severe damage 

inflicted by pine wilt disease, which is caused by the pathogenic nematode Bursaphelenchus 

xylophilus (Suzuki, 2005). Thus, the habitat range of T. matsutake has declined dramatically, 

especially in western Japan. Domestic production in recent years has been limited to just a 

few provinces, e.g., Nagano and Iwate (Ministry of Agriculture, Forestry, and Fisheries, 

Japan). These overall trends may trigger a negative feedback leading to declines in the natural 

populations. Hence, the development of alternative, novel cultivation techniques for this 
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fungus in pine forests and the recovery of the domestic harvest to levels recorded several 

decades ago are highly desirable.

　Tricholoma matsutake cultivation trials in sites other than managed experimental pine 

forests have been conducted in Japan since the 1960s. Although in vitro primordium 

formation of the fungus on nutrient rich soil (additions of glucose and dried yeast) in the 

absence of a host plant has been recorded once (Ogawa and Hamada, 1975), the experiment 

has not been repeated. Inoculations of cultured T. matsutake mycelia into pine forest sites 

have also been attempted, but most of the inocula disappeared before ectomycorrhizal 

associations could be established (Sugawara et al., 2012). Guerin-Laguette et al. (2004) 

reported successful pinpoint inoculation of cultured mycelium into pine roots that lacked 

natural ectomycorrhization. A different inoculation technique involves in vitro 

ectomycorrhization of pine hosts, followed by subsequent transplantation of ectomycorrhizal 

seedlings to the field. Although in vitro ectomycorrhizations have been repeatedly and 

reliably performed (Yamada et al., 1999, 2006; Guerin-Laguette, 2000, 2004; Vaario et al., 

2002, 2010; Kobayashi et al., 2007; Murata et al., 2013, 2015b; Saito et al., 2018), field trials 

of these established ectomycorrhizal systems are as yet limited in scope. Successful 

ectomycorrhizal introductions can be confirmed when the symbiosis survives for 2 y 

(Kobayashi et al., 2008, 2015). We foresee the development of novel techniques that will 

enable the efficient establishment of T. matsutake ectomycorrhizas on pine seedlings in forest 

sites and the expansion of mycelial areas required for fruiting. Progress will depend on a 

better understanding of the mechanisms by which the ectomycorrhizal system in the T. 

matsutake-pine association is controlled by biotic (internal) and abiotic (external) factors 

(Vaario et al., 2019).

Recent investigations of the genetic structures of T. matsutake mycelial colony 

(“shiro”) in forest conditions have suggested that what superficially looks like a single genet 
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based on the epigeous fruiting pattern actually comprises several genets (Murata et al., 2005b; 

Lian et al. 2006). The shiro mycelium produces basidiomata annually for over a decade 

(Hamada, 1970; Ogawa, 1978; Narimatsu et al., 2015; Furukawa et al., 2016). The genetic 

structure of a single shiro may conceivably change over time because spore deposits from 

fruit bodies can theoretically result in di-mon mating or sibling di-di mating among 

germinated individuals within maternal shiro mycelium (Yamada et al., 2019). The observed 

genetic mosaic structure of a shiro requires experimental analysis to determine its 

ecophysiological significance. A fuller understanding of (i) the mechanism by which this 

mosaic structure is established and (ii) its influence on host nutrition may lead to advances in 

matsutake cultivation techniques. Progress will depend on the development of techniques for 

in vitro production of shiro mosaic formations. These techniques should enable manipulation 

of the mosaic structure to achieve sustainable harvests of the fungus under appropriate forest 

management practices.

We recently established a line of T. matsutake sibling isolates using a spore isolation 

technique. Mycelial growth varied among 100 sibling isolates maintained on nutrient 

medium. Carbon and nitrogen nutrition and commensal interactions among isolates on 

nutrient agars also differed among selected isolates (Yamada et al., 2019). Thus, in the current 

study we first aimed to determine the extent to which sibling isolates differed in 

ectomycorrhizal colonization ratios and host responses. Subsequently, we aimed to (i) 

establish a shiro mosaic structure in vitro and (ii) investigate the way in which this structure 

affected host plant growth. We used several DNA markers previously employed to estimate 

genetic diversity in T. matsutake (Guerin-Laguette, et al. 2002; Lian et al., 2003, 2006; 

Murata et al., 2005b, 2008; Xu et al., 2007, 2008; Amend et al., 2010) to analyze the mosaic 

structure. Intraspecific genetic variation in T. matsutake has been investigated by comparisons 

between specimens or isolates from different geographic regions and hosts, but equivalent 
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comparisons of sibling isolates are very few (Murata et al., 2015a). In this study, we 

investigated the significance of the mosaic structure of T. matsutake shiro mycelium using 

data obtained from several new in vitro experiments and previous reports on the 

ecophysiology of this fungus.

2. Materials and methods

2.1. Cultured T. matsutake isolates, host plant, and soil types

Nine sibling isolates (#31，#45，#52，#79，#84，#99，#111，#121，and #126) of 

T. matsutake were used in the experiments. They were selected from a line of 100 isolates

established by spore isolation from a single basidioma collected in Takagi Village, Nagano, 

Japan, and showed physiological differences in their carbon and nitrogen nutrition (Yamada 

et al., 2019). These selected sibling isolates, which had been stored as slant cultures on 

modified Norkrans’ C (MNC) agar medium (Yamada and Katsuya, 1995), were restored to 

mycelial growth on MNC agar plates. 

Seeds of P. densiflora that we used as host plants in our study of in vitro 

ectomycorrhization were collected in the experimental forest owned by the Ibaraki Prefectural 

Forestry Research Institute, Japan, and stored at −60°C until use. These seeds were harvested 

as a mixture from several selected mother trees. Although these trees were open-pollinated, 

and the harvested seeds should thus have genetic variations, we did not consider this aspect in 

the present study.

Soil samples used for ectomycorrhizal synthesis were obtained from the soil B-layers in 

P. densiflora stands located in the Tera Experimental Forest, Faculty of Agriculture, Shinshu

University, Ina City, and in Koshibu, Nakagawa Village, both in Nagano Prefecture. Both are 

granite-based weathered soils (Saito et al., 2018). The soil from the Tera Experimental Forest 

was used in a single isolate inoculation experiment that compared ectomycorrhization abilities 
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between sibling isolates. The soil from Koshibu was used in a mixed isolate inoculation 

experiment that determined the interactions between sibling isolates in a host root system. 

Soil samples were dried at 50°C, sieved through a standard mesh (5 mm mesh), and stored in 

the laboratory until use. Small amounts of these soil samples were used to measure pH and 

the contents of water-soluble inorganic phosphorus (H2PO4
–) and nitrogen (NH4

+, NO3
–, 

NO2
–). A 100-g sample of dried soil was mixed with 100 mL of distilled water in a flask and 

stirred for 1 h with a magnetic stirrer, after which the sample was filtered; the pH of the 

filtrate was then determined. To measure water-soluble phosphate and nitrogen contents, a 50-

g soil sample was mixed with 100 mL of distilled water in a flask and stirred for 1 h with a 

magnetic stirrer. The soil solution was centrifuged at 1,000 g for 10 min (TOMY LC-200 

centrifuge, Tokyo, Japan). The supernatant was filtered and subjected to the following tests: 

PACKTEST WAKPO4 (D), WAK-NH4, WAK-NO3, and WAK-NO2 (KYORITSU 

CHEMICAL-CHECK Laboratory, Tokyo, Japan), which measured the concentrations of 

H2PO4
–, NH4

+, NO2
–, and NO3

–, respectively. The concentrations were measured by 

absorption spectroscopy (JASCO V-530 UV/VIS spectrometer, Tokyo, Japan), and standard 

curves were prepared using standard solutions of KH2PO4, NH4Cl, KNO3, and KNO2 

(Nakalai Tesque, Kyoto, Japan). The average value from three measurements of a single 

sample was used in the analyses. The averages for the Tera Experimental Forest (i.e., “Tera” 

soil) were: pH, 5.67; H2PO4
–, 0.008 mg/kg dried soil; NH4

+, 0.750 mg/kg dried soil; NO3
–, 

0.647 mg/kg dried soil; and NO2
–, 0.002 mg/kg dried soil. The averages for the Koshibu soil 

were: pH, 5.89; H2PO4
–, 0.033 mg/kg dried soil; NH4

+, 0.569 mg/kg dried soil; NO3
–, 0.658 

mg/kg dried soil; and NO2
–, 0.004 mg/kg dried soil.

2.2. In vitro ectomycorrhizal synthesis through single inoculation of T. matsutake isolate into 

Tera soil
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The stored P. densiflora seeds were washed, surface sterilized, and germinated on MNC agar 

plates (Yamada et al., 2010). Seedlings between 7 and 10 d old were transplanted into soil 

prepared in culture vessels using the methods described below. Two mycelial segments (5 × 5 

mm) of each T. matsutake isolate that had been previously cultured on a MNC agar plate for 2

months were inoculated into 10 mL of autoclaved MNC liquid medium in a 75-mL wide-

mouth glass bottle and incubated at 20°C for 1 month to prepare a mycelial inoculum for 

ectomycorrhization. Previously dried and stored soil was dried again at 70°C for 24 h to a 

relative water content of 0%. The dried soil was saturated with distilled water to produce a 

relative water content of 75%. Approximately 180 mL water was required to increase the 

water content to 75% for 1 kg dried soil (Saito et al., 2018). In the nitrogen-added soil 

treatment, 1.0 g of powdered dried yeast (Ebios, Asahi Group Foods, Ltd., Tokyo, Japan) was 

added to 1 L dried soil. A 200-mL sample of the prepared soil was autoclaved in a 250-mL 

polycarbonate wide-mouth vessel (No. 2116-0250; Thermo Scientific Inc., Waltham, MA, 

USA) at 124°C for 60 min. This nitrogen-added condition was intended to reveal 

physiological variations among the nine tested isolates under symbiosis with pine hosts. The 

polyethylene cap of the autoclaved vessel was removed under a sterile hood; the soil was then 

inoculated with liquid-cultured T. matsutake mycelium (equivalent to approximately 30 mg 

dry weight). The inoculum was divided into five portions before being dispersed through the 

soil in the polycarbonate vessel (four portions toward the outer sides of the vessel and one at 

the center at middle soil depth). At the same time, an axenically germinated P. densiflora 

seedling was transplanted into each polycarbonate vessel. A second (open) autoclaved 

polycarbonate vessel was inverted and placed over the top of the planted vessel such that the 

two vessels were mouth to mouth (Kobayashi et al., 2007). The necks of the vessels were 

subsequently sealed with transparent polyvinyl chloride film (Riken Tape; Kyoei Plastic MGF 

Co. Ltd., Tokyo, Japan), after which we weighed the whole assembly. Four 6-mm diameter 
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aeration holes were drilled through the top vessel; each hole was covered with a 

polytetrafluoroethylene membrane seal (pore size 0.45 mm; Milliseal, Merck, Darmstadt, 

Germany). These vessel assemblies were incubated in a growth chamber at 20°C under 

continuous fluorescent illumination at a photon flux of 140 µmol/m2/s for 150 d. Each 

experimental unit comprised six replicate seedlings. Control treatments (no fungal 

inoculation) were established in both soil conditions (with or without dried yeast fertilizer). 

Sterilized distilled water was supplied monthly to the soil substratum in each vessel under a 

sterile hood to maintain a constant vessel weight.

2.3. In vitro ectomycorrhizal synthesis through mixed inoculation with three sibling T. 

matsutake isolates

Based on the results of ectomycorrhizal synthesis in vitro through the single inoculation 

of nine T. matsutake isolates, we selected three (#52, #84, and #99) for a mixture inoculation 

experiment. These three isolates differed in their levels of ectomycorrhization: #84 was high, 

#52 was moderate, and #99 was low. In this experiment, eight inoculation units were 

prepared: #52, #84, #99, #52/#84, #52/#99, #84/#99, and #52/#84/#99, with two inoculation 

designs, i.e. Arrangement-A and Arrangement-B. Preparations for the ectomycorrhizal 

synthesis experiment were similar to those described in section 2.2, except for the steps of 

fungal inoculation and seedling transplantation, and without the addition of dried yeast. 

Prepared mycelia of two or three isolates were concurrently inoculated into three points at 

middle soil depth in a vessel containing a pine seedling. A total amount of approximately 30 

mg (dry weight) inoculum was supplied to each vessel for all mixture inoculation 

experiments, with equal proportions of each isolate. Two types of inoculum design were 

established in the triple inoculation experiment: Arrangement-A, in which three different pairs 

of mycelia (#52/#84, #52/#99, and #84/#99) were inoculated into each of the three points in 
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the soil; and Arrangement-B, in which each of the three isolates was inoculated singly into 

each of the three points in the soil (Fig. 1). Arrangement-A was expected to promote more 

mycelial competition than Arrangement-B. The different arrangements were designed to 

distinguish direct and indirect competition between different mycelia in the association with 

the host (Kennedy and Bruns, 2005). Single isolate inoculations (#52, #84, or #99) were also 

set up because the soil used in this mixture inoculation experiment was different from that 

used in the single inoculation experiment (2.2). Each experimental unit comprised five 

replicate seedlings. A control treatment (no fungal inoculation) was also set up. 

One pine seedling was transplanted into the soil of the vessel 30 d after fungal 

inoculation. Direct fungal competition was expected to have occurred during the 

pretransplantation period. The seedlings were then maintained in the vessels for a further 120 

d. 

2.4. Harvesting and measurement of seedlings grown with single isolates 

After a 150-d incubation, a small volume of the soil particles in each vessel was taken and 

inoculated onto an MNC agar plate to check for the presence/absence of contaminating 

microbes and the growth of inoculated T. matsutake mycelium. Following this procedure, 

each seedling was removed from the vessel and separated into shoot and root portions. The 

shoot was dried at 60°C for 24 h, after which the dry weight was determined. The root system 

was washed in flowing tap water and cut into segments <1.0 cm in length. Root lengths were 

measured using the grid-line intersect method (Brundrett et al., 1996). We determined the 

total actual ectomycorrhizal root length. The total root length of a seedling was estimated as 

one-quarter of the measured root length. We examined small samples of sound 

ectomycorrhizal root tips microscopically to determine the presence/absence of 

morphological and anatomical characteristics of ectomycorrhizal development (Yamada et al., 
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2010). After the measurements were completed, the root system was dried and weighed. We 

calculated (i) total seedling weight, (ii) shoot/root (S/R) biomass ratios, and (iii) 

ectomycorrhizal root colonization ratio from the individual data points, i.e., shoot and root 

weights, and total and ectomycorrhiza root length, for each seedling.

2.5. Harvesting and measurement of seedlings grown with isolate mixtures

After a 120-d incubation, a small volume of the soil particles from each vessel was inoculated 

onto an MNC agar plate to check for the presence/absence of contaminating microbes. 

Following this procedure, three aluminum plates (7 × 3 cm) were inserted vertically into the 

culture vessels to separate the soil and the root system into three portions, each of which had 

been previously inoculated with different mycelium (Fig. 1). The seedling shoots were 

removed from the vessel, after which the separated soil portions and the roots they contained 

were extracted. Five ectomycorrhizal root tips were randomly sampled from each of the soil 

samples and stored in a refrigerator for DNA analysis, as described below (2.6). The roots and 

shoots were prepared following the methods described in section 2.4.

2.6. DNA analyses of ectomycorrhizal root tips in the mixed culture experiment

The three isolates we tested (#52, #84, and #99) had two different restriction fragment 

length polymorphism (RFLP) patterns in the intergenic spacer (IGS) 1 region of the rRNA 

gene cluster (Yamada et al., 2019). We, therefore, first targeted this site to determine how 

mixed fungal inoculations develop ectomycorrhizal symbioses in the root system of a single 

host. Fungal DNA was extracted from a single ectomycorrhizal root tip using the procedure 

described by Endo et al. (2015) with minor modifications. The primer pair CNL12/5S-

Anderson was used for PCR amplification of the IGS1 region (Duchesne and Anderson, 

1990; Anderson et al., 1992). PCR was performed in a thermal cycler GeneAmp PCR System 

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660



12

2700 (Applied Biosystems, Waltham, MA, USA). We amplified extracted template DNA by 

PCR using DreamTaq Polymerase (Thermo Scientific, USA) following the manufacturer’s 

recommendations. Cycle parameters for PCR were as follows: first denaturation at 95°C for 

30 s, 40 cycles of denaturation at 95°C for 30 s, annealing at 60°C for 30 s, and extension at 

72°C for 90 s, with a final extension at 72°C for 10 min. Because the PCR amplicons of the 

IGS1 regions of the three T. matsutake isolates tested have different RFLP patterns following 

digestion with HaeIII (Yamada et al., 2019), we used this restriction enzyme (Takara Bio Inc, 

Shiga, Japan) for the analysis, following the manufacturer’s instructions. The digestion 

samples were electrophoresed following the procedures of Endo et al. (2015). When 

necessary, cloning of the IGS1 region was performed following the procedure of Ogawa et al. 

(2018).

We used the retrotransposon marker for T. matsutake typing at the genet level (Murata 

et al., 2005a) to distinguish the three isolates. This DNA marker distinguishes the tested 

isolates on MNC agar (Yamada et al., 2019), and we therefore used it on the ectomycorrhizal 

root samples. We subjected the extracted DNA samples to PCR using the primers 

pL281/pS48, pDGSL313-1/pS48, pDGSL719-2/pS48, and pS1 following the procedures 

described by Murata et al. (2005a, 2005b, 2008), with minor modifications. PCR was 

performed using the ProFlex PCR System (Applied Biosystems). Cycle parameters for PCR 

were as follows: first denaturation at 95°C for 2 min, 40 cycles of denaturation at 95°C for 30 

s, annealing at 61°C for 30 s, and extension at 72°C for 90 s, and a final extension at 72°C for 

10 min. 

To cross compare the distinguishing abilities of DNA markers among isolates, we also 

tested microsatellite markers (Trma01, Trma02, Trma07, Trma08, Trma14, and Trma16) that 

can distinguish genets of T. matsutake (Lian et al., 2003, 2006) following the procedures of 

Lian et al. (2006). 
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2.7. Data analyses

One-way ANOVA was used to test for significant differences among means in each 

experiment; the analyses were performed with Kaleidagraph ver. 4.5 software (Synergy 

Software, USA). Tukey's HSD post hoc test or Dunnett’s post hoc test were used for multiple 

pairwise comparisons (P < 0.05) of treatment means. When necessary, t-tests were used for 

additional comparisons between pairs of selected treatments. Two-way ANOVA was used to 

identify significant effects of the inoculated fungal strains, soil nitrogen condition, and their 

interaction on host pine growth. S/R ratios were arcsine transformed prior to ANOVA. 

Regression analyses were also used to determine (i) the effects of ectomycorrhizal root length 

on plant growth parameters, and (ii) the effects of soil nitrogen and phosphorus on 

ectomycorrhizal root length and plant growth parameters.

3. Results

3.1 Ectomycorrhization by the nine sibling isolates inoculated into Tera soil

Ectomycorrhizas were formed by all isolates tested, and on most seedlings, with the 

exception of a seedling inoculated with isolate #99 into soil with added nitrogen. We 

observed a thin fungal mantle on the lateral root surface and Hartig net development in the 

root cortex of the ectomycorrhizal root tips (Fig. 2). No ectomycorrhizal formation was 

observed on un-inoculated control seedlings. Mycelia of T. matsutake were detected from all 

inoculated soils as recovered mycelia on MNC agar plates. No microbial contamination was 

observed in any of the treatment or control soils.

Seedlings grown in soils inoculated with isolate #84 had the longest ectomycorrhizal 

root lengths and greater ectomycorrhization colonization regardless of the presence of 

additional nitrogen (Fig. 3A, B). The level of ectomycorrization produced in the symbiosis 
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with isolate #84 was similar between soil treatments (with/without added nitrogen), but for 

isolates #45, #79, and #121, the level of ectomycorrhization was significantly higher in the 

presence of added nitrogen (P < 0.05). 

Inoculation with isolates #111 and #126 produced significantly higher seedling 

biomasses than the controls when no supplementary nitrogen was added to the soil (Fig. 3C; 

P < 0.05). Seedling biomasses were not significantly different from the controls in the 

absence of supplementary nitrogen when the other isolates were inoculated, although 

inoculation with isolate #121 showed a trend toward higher seedling biomass than the control 

(P < 0.1). When supplementary nitrogen was added, total plant biomass was not significantly 

different from the control in any isolate inoculations, although inoculation of isolate #84 did 

show a trend toward higher biomass than the control (P < 0.1). Total plant biomass was 

generally higher in the no supplementary nitrogen soil condition than in the supplementary 

nitrogen soil condition, and the control and inoculations of isolates #31, #99, #111, #121, and 

#126 showed significant differences (P < 0.05) in response to the soil nitrogen condition.

Shoot biomasses varied among fungal isolate inoculations (Fig. 3D). When no nitrogen 

was added, shoot biomasses were significantly larger than in the control after inoculations 

with six of the isolates (P < 0.05). When supplementary nitrogen was added, shoot biomass 

significantly exceeded that of the control only when isolate #84 was inoculated (P < 0.05). 

Shoot biomass was generally higher in the soil condition with no supplementary nitrogen than 

in soil with added nitrogen, and inoculations of isolates #31, #99, #111, #121, and #126 

showed significant differences (P < 0.05) in response to the soil nitrogen condition. 

When no supplementary nitrogen was added, root biomass was significantly higher 

than the control only when isolate #126 was inoculated (Fig. 3E). When supplementary 

nitrogen was added, root biomasses were not significantly different from the control across all 

fungal isolate inoculations. Root biomass was generally higher in soil without supplementary 

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840



15

nitrogen than in the supplementary nitrogen condition, and the control and inoculations of 

isolates #31, #52, #79, #111, #121, and #126 showed significant differences (P < 0.05) in 

response to the soil nitrogen condition.

The S/R ratio of seedlings (Fig. 3F) showed a similar pattern to that of shoot dry weight 

(Fig. 3D). Inoculations of isolates #111 and #121 showed significantly higher S/R ratios in 

the condition without supplementary nitrogen than in the control. S/R ratio was significantly 

higher in the supplementary nitrogen condition than in the control only in the inoculation of 

isolate #111. S/R ratio was generally the same for each isolate between soil nitrogen 

conditions, but was significantly higher in the supplementary nitrogen condition than in the 

no supplementary nitrogen condition when isolates #52 and #79 were inoculated.

 Soil nitrogen addition influenced the measured plant parameters (Table 1). Fungal 

isolate identity affected host shoot weight, the S/R ratio, and ectomycorrhizal biomass. 

Because the level of ectomycorrhizal colonization varied markedly among fungal isolates and 

between two levels of nitrogen fertilization, we used regression analysis to investigate the 

relationship between ectomycorrhization level and host biomass. Although the 

ectomycorrhization level was not correlated with plant biomass when no supplementary 

nitrogen was added, the two variables were significantly positively correlated when 

supplementary nitrogen was available (Fig. 4).

3.2 Ectomycorrhization following inoculations of mixtures of sibling isolates into Koshibu 

soil

Ectomycorrhizas formed following all inoculations except when isolate #99 was 

inoculated alone. No ectomycorrhizas formed on the roots of uninoculated control seedlings. 

Mycelia of T. matsutake were detected from all inoculated soils as recovered mycelia on 

MNC agar plates. No microbial contamination occurred in any of the soils, including the 
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controls. 

The longest ectomycorrhizal root length was obtained when paired mixtures of isolates 

#52/#99 were inoculated (Fig. 5A), and was significantly longer than that developed 

following single inoculation with isolate #52 (P < 0.05; t-test). Ectomycorrhizal root lengths 

measured following paired inoculations of isolates #52/#84 tended to be longer than those 

measured following single inoculation of either isolate (P > 0.1; t-test). The paired inoculation 

of isolates #84/#99 produced shorter ectomycorrhizal root lengths than the single inoculation 

of isolate #84 (P < 0.1; t-test). In the triple inoculation experiments, ectomycorrhizal root 

lengths that developed in Arrangement-A tended to be longer than those that developed 

following single inoculations of isolates #52 and #84 (P > 0.1; t-test), but were similar to the 

average ectomycorrhizal root lengths that developed following inoculation with three paired 

isolates (#52/#84, #84/#99, and #52/#99). The average ectomycorrhizal root lengths that 

developed in Arrangement-B were similar to those that developed following single 

inoculations of isolates #52 and #84, but were significantly smaller than the average 

ectomycorrhizal root lengths that developed following paired inoculations of these three 

isolates (P < 0.01; t-test).

Host plant biomass was significantly greater in the control than in treatments inoculated 

with isolate #52, especially in shoots (Fig. 5B, C). Shoot biomasses were also significantly 

reduced following single inoculations of isolates #84 and #99, all three paired inoculations, 

and in the Arrangement-B (P < 0.05). The root mass that developed following the inoculation 

of isolate #52 showed a lower trend than that in the control, but this was not the case for other 

isolates. Ectomycorrhization level was not correlated with plant biomass (Fig. 6).

3.3 RFLP patterns in the IGS1 region of ectomycorrhizal root tips following mixed isolate 

inoculations
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We analyzed a single ectomycorrhizal root tip from each harvested ectomycorrhizal sample.  

Most samples, except for one obtained following triple inoculation in Arrangement-B (sample 

ID: B3-2), had a single PCR product of ca. 460 bp. Samples from paired inoculations had a 

single RFLP pattern, i.e., 310 bp and 110 bp bands (Fig. 7), which was identical to the pattern 

for isolates #52 and #84. Most samples from Arrangement-A also had a RFLP pattern identical 

to that of isolates #52 and #84; sample ID: A5-2 was an exception, as it had a RFLP pattern 

identical to that of mixed isolate #99 (205 and 110 bp) and those of the other two isolates, i.e., 

310, 205, and 110 bp bands. Most samples from Arrangement-B also had a RFLP pattern 

identical to that of isolates #52 and #84, but sample ID: B5-3 had a RFLP pattern identical to 

that of a mixture of three isolates.

3.4 Retrotransposon-based molecular marker (LTR) detection of inoculated isolates in 

ectomycorrhizal root tips that grew after mixed isolate soil inoculation 

The LTR markers were able to detect the three individual sibling isolates. The primer pairs 

pL281/pS48, pDGSL719-2/pS48, and the single primer pS1 performed especially well 

(Supplementary Figs. S1–S5; Table 2). However, PCR amplicons obtained using the primer 

pair pDGSL313-1/pS48 did not clearly distinguish the individual T. matsutake isolates (data 

not shown). Two samples from the Arrangement-B triple inoculation experiment were not 

included the LTR analysis because the DNA samples were insufficient for PCR. Isolates #52 

and #84 were regularly detected in single root tips by LTR, even though this was not possible 

in the IGS1 analysis because the isolate RFLP patterns were identical. The detection ratio for 

isolate #52 was higher than the detection ratio for #84 (Table 2). Isolate #99 was rarely detected 

by either LTR or RFLP analyses (Fig. 7). None of the three isolates was detected in the 

ectomycorrhizal root tips after triple soil inoculations.
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3.5 Comparison of DNA markers that distinguished sibling isolates of T. matsutake

In our microsatellite marker analysis, primers Trma01 and Trma16 produced two 

band patterns in the cross comparison of the three sibling isolates #52, #84, and #99 (Fig. 8). 

However, Trma02, Trma07, Trma08, and Trma14 produced a single pattern. We tested Trma01 

and Trma16 on the nine sibling isolates. Trma01 and Trma16 produced only two band patterns 

(Fig. 9). This microsatellite marker was, therefore, considered inadequate for discriminating 

sibling isolates. Hence, we did not use microsatellite markers for the analysis of 

ectomycorrhizal root tips.

Discussion

Sibling spore isolates of T. matsutake obtained from a single basidioma varied greatly in their 

in vitro ectomycorrhizal colonization ability when tested on P. densiflora seedlings. The 

patterns of variation differed between soil nitrogen levels (Fig. 3). Thus, the matsutake–pine 

associations appear to be influenced by the fungal genetic background, although the effects of 

the pine genetic background should not be ignored (Karst et al., 2009). We were unable to 

consider the genetic background of pine seedlings based on our experimental data, which is a 

weak point in the present study. The variability in colonization abilities among isolates was not 

apparent in the growth patterns of the nine isolates on MNC agar media. These nine isolates 

were selected from >100 based on their mycelial growth ratios. The slow-growing isolates #31 

and #99 (on MNC agar) (Yamada et al., 2019) had reduced levels of ectomycorrhizal 

development, but the rapidly growing isolate #79 (on MNC agar) also had a reduced level of 

ectomycorrhizal development in the absence of nitrogen fertilization (Fig. 3). In contrast, the 

slow-growing isolates #84 and #111 (Yamada et al., 2019) had higher levels of ectomycorrhizal 

development, regardless of soil nitrogen level. Therefore, the growth of different T. matsutake 

isolates on nutrient agar is not a good predictor for selecting appropriate strains for symbiotic 
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development with pine tree hosts. Nevertheless, most of the intraspecific data available for 

ectomycorhizal fungus performance has been obtained from cultured mycelial isolates grown 

on nutrient agars in the absence of host plants (e.g., Cairney, 1999; Colpaert et al., 2000; Guidot 

et al., 2005; Wilkinson et al., 2010), and the isolates in these studies often had different 

geographic origins or different host plant species. These combinations of isolates with different 

provenances have much more diverse genetic backgrounds than sibling isolates from a single 

basidioma. A very diverse genetic background hampers the determination of the genetic 

components of the fungus-plant interaction.

Importantly, we found that sibling isolates of T. matsutake can together colonize a 

host root system, thereby increasing ectomycorrhizal biomass. The combined presence of 

inoculates #52 and #99 increased the ectomycorrhizal biomass by a factor of five in comparison 

with biomasses resulting from single isolate inoculations (Fig. 5). Our DNA analysis of this 

paired inoculation (#52 and #99) demonstrated a significant dominance of #52 over #99 (Table 

2). Colonization by isolate #99 was only detected in two of the triple inoculation samples (Fig. 

7). Thus, competition among sibling isolates appears to promote ectomycorrhizal development 

by enhancing fungal colonization ability during occupation of the root system. This 

“competitive activation” hypothesis is also congruent with data from the triple inoculation 

experiment, especially in the case of Arrangement-A, in which we expected more competition 

among sibling mycelia than in Arrangement-B. Arrangement-A inoculation resulted in 

considerable ectomycorrhizal biomass. The combination of the two isolates #52 and #84 

doubled the ectomycorrhizal biomass over levels produced in the single inoculations of these 

isolates (Fig. 5); our DNA analysis demonstrated co-dominance of these two isolates (Table 2). 

The boosting effect on ectomycorrhization resulting from mixed inoculations of T. matsutake 

isolates to a single host should have commercial implications for the production of 

ectomycorrhizal pine seedlings for cultivation and future field transplantation trials. However, 
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the combination of isolates #84 and #99 was a neutral association, i.e., ectomycorrhizal biomass 

did not exceed the average value of the single inoculations, and the DNA analysis demonstrated 

complete dominance of isolate #84 in the association. Hence, the competitive activation 

hypothesis was not applicable to the #84/#99 combination. In our paired and triple inoculation 

experiments, we did not observe the priority effect of ectomycorrhizal competition that has 

been reported for Rhizopogon-pine combinations. The timing of ectomycorrhizal colonization 

(growth rate of ectomycorrhizas) strongly affects interspecific competition between 

Rhizopogon species (Kennedy and Bruns, 2005; Kennedy et al., 2009). Our experimental data 

and the competitive activation hypothesis partially explain why large mycelial colonies of T. 

matsutake may be maintained over long periods (decades) (Hamada, 1970, Lian et al., 2006; 

Yamada et al., 2010, Narimatsu et al., 2015). If competition among sibling isolates in a shiro 

were to decrease annually or cease completely due to reductions in basidiospore dispersal from 

epigeous basidiomata or from outside the shiro, a shiro mycelium would likely decline 

gradually in area and biomass. 

The genetic mosaic structure of the T. matsutake shiro mycelium was recently 

demonstrated using fine DNA markers that distinguish genets of this fungus (Murata et al., 

2005b; Lina et al., 2006). The large shiro mycelium of T. matsutake in the soil assumes a 

circular shape at ground level, often forming fairy rings of basidiomata (Hamada, 1970; Ogawa, 

1978; Narimatsu et al., 2016). These rings have been a focus of attention among mycologists 

interested in their genetic construction, i.e., single genets or consortia of genets? A mosaic 

structure was demonstrated by analyses of basidiomata (Murata et al, 2005b; Lina et al, 2006), 

shiro mycelia, and ectomycorrhizal root tips in the soil at a resolution scale of 30 cm between 

soil samples (Lina et al., 2006). In the present study, we found evidence that sibling isolates 

provided a mosaic structure even in a single ectomycorrhizal root tip, as speculated by Murata 

et al. (2005b), but deemed unrealistic by Lina et al. (2006): paired inoculations of isolates #52 
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and #84 consistently co-existed in single ectomycorrhizal root tips (Table 2). Tricholoma 

matsutake does not have a demarcation line between different dikaryotic isolates when they are 

paired on nutrient agar plates (Ogawa, 1978; Yamada et al., 2019), unlike other diverse saprobic 

mushroom fungi (Esser, 2006; Boddy et al., 2007) or several ectomycorrhizal mushroom taxa 

that have been tested (Fries, 1987; Dahlberg, 1995). Although ectomycorrhizal fungi, such as 

Pisolithus, have functional territoriality and distinct boundaries between different dikaryotic 

isolates in symbioses with host plants (Wu et al., 2012), our data indicate that T. matsutake has 

a different mycelial strategy in the vegetative growing phase. However, the mechanism by 

which genetically different dikaryons can grow in a single ectomycorrhizal root tip to build a 

general symbiotic structure is as yet unexplored. Although our data are not definitive, there may 

be an unknown genetic mechanism in the basidiomycetous ectomycorrhizal fungi. We strongly 

recommend that future studies focus on ectomycorrhizations initiated from basidiospores or 

monokaryotic mycelial isolate inocula. Monokaryotic isolates of T. matsutake growing on agar 

medium have recently been reported; the mycelial growth rates were slow (Murata et al., 2015a). 

If di-mon mating between a dikaryotic shiro mycelium and a monokaryotic mycelium were to 

occur, some combinations of previously existing dikaryotic shiro mycelium and newly 

established dikaryotic shiro mycelium should initiate competitive activation within a single 

shiro structure.

We confirmed the co-existence of two sibling isolates in a single ectomycorrhizal 

root tip using IGS1 and LTR markers (Fig. 7, Table 2). PCR-RFLP analysis of the IGS1 region 

has demonstrated variation in T. matsutake populations (Guerin-Laguette et al., 2002; 

Matsushita et al., 2005), but not in the ITS region that is used to distinguish species. The IGS1 

analysis of isolates #52 and #84 in the present study produced the same patterns (Fig. 5). 

Although both LTR and microsatellite markers distinguished the sibling isolates #52, #84, and 

#99 (Table 2, Fig. 8), the microsatellite markers did not fully discriminate these three isolates 
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when they were mixed in a single DNA sample, likely because these markers provided only 

three patterns among the 9 sibling isolates tested when using primers Trma01 and Trma16 (Fig. 

7). LTR markers were previously reported to discriminate among the nine sibling isolates that 

were tested for ectomycorrhizal synthesis in the present study (Yamada et al., 2019). Therefore, 

the controversy over whether a single basidioma of T. matsutake can provide different 

heterozygotic genets (Murata et al., 2005b; Lian et al., 2006) may be a result of the different 

discriminating abilities of the DNA markers used. The results of our LTR marker analysis were 

largely congruent with those of Murata et al. (2005b). The shiro mycelium reported by Lain at 

al. (2006) should perhaps be re-analyzed with finer DNA markers. The DNA analysis of a single 

ectomycorrhizal root tip conducted in this study (Fig. 7, Table 2), however, does not completely 

preclude shortcomings. The result may reflect contamination of extramatrical hyphae of one 

isolate on an ectomycorrhizal root tip colonized by another isolate. Our future research should, 

therefore, include a study with a higher burden of proof involving DNA analysis of sectioned 

root fragments in an ectomycorrhizal root tip.

We used “Tera” and “Koshibu” soils in our in vitro experiments. With Tera soil we 

observed the symbiotic effect of T. matsutake on pine growth and a positive correlation between 

ectomycorrhizal root length and pine seedling biomass (Fig. 4). In the experiment using 

Koshibu soil we found a commensal effect of T. matsutake inoculation on pine growth, but no 

correlation between ectomycorrhizal root length and pine seedling biomass. We have 

consistently reported the symbiotic effect of T. matsutake on pine growth in vitro when using 

different soil samples (Yamada et al., 2006, Murata et al., 2013, Saito et al., 2018). The Koshibu 

soil experiment was the first to show a commensal effect of T. matsutake on pine growth. This 

soil had a higher phosphorus content than Tera soil, but the nitrogen contents were similar. The 

biomass of seedlings in Koshibu controls exceeded the biomass in Terra soil controls (P = 

0.138; t-test). Therefore, we suggest that the commensal effect of T. matsutake on pine growth 
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in Koshibu soil was not related to soil nutrient deficiencies. However, as ectomycorrhizal root 

length and seedling biomass in Tera soil were positively correlated only when supplementary 

nitrogen was added, the N/P balance in Koshibu soil may have influenced the commensal effect 

of T. matsutake on pine growth. The ectomycorrhizal root lengths of #52-inoculated pine 

seedlings were highly similar between Tera and Koshibu soils (P = 0.432; t-test), but the 

ectomycorrhizal root lengths of #84-inoculated pine seedlings were significantly lower in 

Koshibu soil than in Tera soil (P = 0.018; t-test). These isolate-dependent responses in 

ectomycorrhizal development should be further studied to identify the factors that were the 

primary determinants of these experimental outcomes. We recently reported that some specific 

combinations of T. matsutake isolates and soil types had positive effects on both 

ectomycorrhizal length and pine seedling biomass in vitro (Saito et al., 2018). Thus, the 

following isolate/soil combinations will be beneficial for the production of matsutake-

associated pine seedlings that may be used in future cultivation studies of this fungus: isolate 

#84 in Tera soil, paired isolates #52/#99 in Koshibu soil, and paired isolates #52/#84 in Koshibu 

soil. The granite-based, weathered B-layer mineral soils used in the present study and in our 

previous work (Yamada et al., 2006, 2010; Saito et al., 2018) were deficient in both nitrogen 

and phosphorus. This type of soil is quite common in the Japanese natural habitat of T. 

matsutake in P. densiflora forests (Ogawa, 1978; Vaario et al., 2017; Saito et al., 2018). 

Nitrogen addition to these soils at a rate of 1.0 g Ebios dried yeast/L soil relieved likely nutrient 

deficiencies and increased both ectomycorrhizal and host pine growth in vitro (Yamada et al., 

2006; Kobayashi et al., 2007), but overdosing at a rate of 10 g Ebios/L soil had negative effects 

(unpublished data). Nitrogen addition to forest soils decreases the external mycelium of 

ectomycorrhizal fungi (Nilsson and Wallander, 2003) and changes their species composition 

(Peter et al., 2001; Parrent and Vilgalys, 2007). Therefore, optimization of soil nutrient 

conditions for better growth of both ectomycorrhizas and hosts in the matsutake-pine 
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association in this soil type is desirable for further practical cultivation studies of this mushroom.
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Figure Legends

Fig. 1．Inoculation locations of Tricholoma matsutake mycelium in the triple inoculation 

experiment. Two configurations (A, B) were set up in this experiment. The numbers in each 

circle enclosed by a dashed line are the code numbers of the inoculated isolates. Dashed 

straight lines show where the soil was separated, when the root system was measured, and the 

root tips were sampled for fungal DNA content.

Fig. 2. Ectomycorrhizas synthesized in vitro following inoculation of single Tricholoma 

matsutake isolates. (A) External morphology of a Y-shaped ectomycorrhizal root tip grown in 

soil inoculated with isolate #84 without additional nitrogen. (B) External morphology of young 

ectomycorrhizal root tips grown in nitrogen-fertilized soil inoculated with isolate #84. (C) 

Transverse section of ectomycorrhizal root tip grown in soil inoculated with isolate #84 without 

additional nitrogen. (D) Semi-longitudinal section of young ectomycorrhizal root tip grown in 

nitrogen-fertilized soil inoculated with isolate #126. Arrows indicate Hartig net hyphae in the 

root cortex. Ep, epidermal cells, some of which have tannin cell characteristics (C); Co, cortical 

cell; En, endodermal cell; Nu, nucleus of a cortical cell. Bars, 0.5 mm (A, B), 20 µm (C, D).

Fig. 3. Ectomycorrhizal development and host biomasses following the inoculation of single 

Tricholoma matsutake isolates into Tera soil. (A) ectomycorrhizal root length; (B) 

ectomycorrhizal colonization ratio; (C) total seedling biomass; (D) shoot biomass; (E) root 
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biomass; (F) shoot/root biomass ratio. Values are means + SE (n = 6). S, significant difference 

between treatment and control means (P < 0.05); s, significant difference between treatment 

and control means (P < 0.1); *, significant difference between means with and without 

supplementary nitrogen (P < 0.05; t-test); **, significant difference between means with and 

without supplementary nitrogen (P < 0.1; t-test); Cont, control. Different upper and lower case 

letters (A–C, a–d) identify significant pairwise differences between T. matsutake isolates in 

each soil treatment (P < 0.05). 

Fig. 4. Relationships between biomass and ectomycorrhizal root length in ectomycorrhizal 

seedlings separately inoculated with each of nine Tricholoma matsutake isolates. Controls were 

not inoculated. Treatments were applied with or without supplementary nitrogen in the Tera 

soil substrate. Data were extracted from Fig. 3 and subjected to correlation analysis (n = 60). 

Fig. 5. Ectomycorrhizal development and host biomasses after single and paired inoculations 

of three Tricholoma matsutake isolates into Koshibu soil. (A) seedling total biomass and 

ectomycorrhizal root length; (B) shoot and root biomasses; (C) ectomycorrhizal colonization 

ratio and shoot/root biomass ratio. Values are means + SE (n = 5). S, significant difference 

between treatment and control means (P < 0.05); s, significant difference between treatment 

and control means (P < 0.1). Different lower case letters (a, b) identify significant pairwise 

differences between means (P < 0.05). 

Fig. 6. Relationships between biomass and ectomycorrhizal root length in ectomycorrhizal 

seedlings inoculated with three selected Tricholoma matsutake isolates and control seedlings. 

All seedlings were grown in Koshibu soil. The graph was plotted from data extracted from Fig. 

5; the correlation coefficients were calculated from these data (n = 45).
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Fig. 7. Restriction fragment length polymorphism (RFLP) patterns in the intergenic spacer 

(IGS) 1 region of the rRNA gene cluster obtained from ectomycorrhizal samples that developed 

after mixed inoculations of three sibling Tricholoma matsutake isolates. Paired inoculations of 

three sibling isolates (#52/#84, #52/#99, and #84/#99) and triple inoculations of these three 

isolates in Arrangement-A (A1–A5) and Arrangement-B (B1–B5) (Fig. 1) were performed. M: 

molecular ladder marker (100 bp–3 kbp). 

Fig. 8. Polymorphic patterns of six microsatellite markers in three sibling Tricholoma 

matsutake isolates. In the Trma01 electrophoresis, isolates #52 and #84 produced identical 

bands; isolate #99 had a slightly larger band size (two bands present). In the Trma16 

electrophoresis, isolates #84 and #99 had identical bands, but isolate #52 had a slightly smaller 

band size. The remaining four markers had the same band pattern among the three isolates. NC, 

negative control; M, DNA ladder marker (100–1,000 bp).

Fig. 9. Polymorphic patterns of two microsatellite markers in nine sibling Tricholoma 

matsutake isolates. In the Trma01 electrophoresis, seven sibling isolates (#31, #45, #52, #84, 

#111, #121, and #126) had identical single-band patterns; the remaining two (#79 and #99) had 

identical band patterns. Isolate AT-0740 (740 in the figure) had a unique three-band pattern. 

Y1 had a band pattern identical to those of #52 and #84. In the Trma16 electrophoresis, eight 

sibling isolates had identical two-band patterns. Isolate #52 had a single-band pattern. Isolate 

AT-0740 produced no bands. The band pattern of Y1 was identical to that of #52. Isolates Y1 

and AT-0740 were known T. matsutake isolates (Yamada et al., 2019).
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Table 1. Two-way ANOVA summary table identifying significant effects of fungal isolate 

identity (nine levels), nitrogen fertilizer addition (two levels), and their interaction on host plant 

parameters.

Fungal isolate Nitrogen level Interaction
Parameter

F-value P-value F-value P-value F-value P-value
Seedling dry weight 1.5 0.16589 63.8 <0 .0001 2.1 0.0468

Shoot dry weight 2.9 0.00608 37.4 < 0.0001 2.5 0.01883
Root dry weight 1.8 0.08767 74.4 <0 .0001 1.7 0.10468

Shoot/Root biomass 
ratio 4.3 0.0002 4.8 0.03156 2 0.05172

Total root length 1.0 0.47196 24.8 <0 .0001 0.4 0.90739
Ectomycorrhizal root 

length 21.5 <0.0001 12.2 0.00076 4.2 0.00025

Ectomycorrhizal 
colonization ratio 21.3 <0.0001 30.7 <0.0001 5.0 <0 .0001



2

Table 2. Detection of three Tricholoma matsutake isolates in ectomycorrhizal samples taken 

from soils inoculated with isolate mixtures. The retrotransposon-based molecular marker 

(LTR) analysis was performed with primer pair pS48/pL281.

Isolate detection in ectomycorrhizal root samplesIsolate inoculation 
combination

Number of 
ectomycorrhizal 
root tip samples 

tested #52 #84 #99

#52/#84 5 (A–E) ABCDE A - CD - (not subjected)
#99/#52 5 (A–E) ABCDE (not subjected) - - - - -
#84/#99 5 (A–E) (not subjected) ABCDE - - - - -
Arrangement-A 1 3 (A–C) ABC ABC - - -
Arrangement-A 2 3 (A–C) ABC A - C - - -
Arrangement-A 3 3 (A–C) ABC A - C - - -
Arrangement-A 4 3 (A–C) ABC ABC - - -
Arrangement-A 5 3 (A–C) AB - A - C - B -
Arrangement-B 1 3 (A–C) ABC ABC - - -
Arrangement-B 2 3 (A–C) ABC AB - - - -
Arrangement-B 3 2 (A, B)* AB AB - -
Arrangement-B 4 3 (A–C) ABC ABC - - -
Arrangement-B 5 2 (A, B)* AB A - - -

This table summarizes data extracted from the electrophoresed band patterns in 

Supplementary Figs. 1–5. See Fig. 1 for an explanation of Arrangement-A and Arrangement-

B. Shared upper case letters in columns 3 and 4 indicate the presence of two isolates in a

single ectomycorrhizal root tip.
*, sample data missing; -, isolate not detected




