2,147 research outputs found

    Oxidation of dimethyl-ether and ethylene in the atmosphere and combustion environment and thermodynamic studies on hydrofluorocarbons using ab initio calculation methods

    Get PDF
    Reaction pathways and kinetics are analyzed on CH3OC·H2 unimolecular decay and on the complete CH3OC·H2 + O2 reaction system using thermodynamic properties (ΔHf°298, S°298, and C(T) 300≤T/K≤1500) derived by two ab initio calculation methods, CBS-q and G2. These are used to determine thermodynamic properties of reactants, intermediate radicals and transition state (TS) compounds. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate energy dependent rate constants, k(E), and master equation is used to account for collisional stabilization. Comparison of calculated fall-off with experiment indicates that the CBS-q and G2 calculated Ea,rxn for the rate controlling transition state (-scission reaction to C·H2O + C·H2OOH) needs to be lowered by factor of 3.3 kcal/mol and 4.0 kcal/mol respectively in order to match the data of Sehested et al. Experimental results on dimethyl-ether pyrolysis and oxidation reaction systems are compared with a detailed reaction mechanism model. The computer code CHEMKIN II is used for numerical integration. Overall agreement of the model data with experimental data is very good. Reaction pathways are analyzed and kinetics are determined on formation and reactions of the adduct resulting from OH addition to ethylene using the above ab initio methods. Hydrogen atom tunneling is included by use of Eckart formalism. Rate constants are compared with experimentally determined product branching ratios (C·H2CH2OH stabilization : CH2O + CH3 : CH3CHO + H). ab initio calculations are performed to estimate thermodynamic properties of nine fluorinated ethane compounds (fluoroethane to hexafluoroethane), eight fluoropropane (1-fluoropropane, 1,1- and 1,2-difluoropropane, 1,1,1- and 1,1,2-trifluoropropane, 1,1,1,2- and 1,1,2,2-tetrafluoropropane and 1,1,2,2-pentafluoropropane), and 2- fluoro,2-methylpropane. Standard entropies and heat capacities are calculated using the rigid-rotor-harmonic-oscillator approximation with direct integration over energy levels of the intramolecular rotation potential energy curve. Enthalpies of formation are estimated using G2MP2 total energies and isodesmic reactions. Thermodynamic properties for fluorinated carbon groups C/C/F/H2, C/C/F2/H, C/C/F3, C/C2/F/H, C/C2/F2 and C/C3/F for fluorinated alkane compounds, CD/F/H and CD/F2 for fluorinated alkene compounds and CT/F for fluorinated alkyne compounds are estimated. Fluorine-fluorine interaction terms F/F, 2F/F, 3F/F, 2F/2F, 3F/2F and 3F/3F for alkane compounds, F//F, 2F//F and 2F/2F for alkene compounds, and F///F for alkyne compound are also estimated

    FE2 evaluation of stress triaxiality / lode angle dependencies of void growing processes

    Get PDF
    This document provides information and instructions for preparing a Full Paper to be included in the Proceedings of COMPLAS 2019 Conference

    Gravitino Problem in Inflation Driven by Inflaton-Polonyi K\"ahler Coupling

    Full text link
    We discuss the cosmological gravitino problem in inflation models in which the inflaton potential is constructed from K\"ahler potential rather than superpotential: a representative model is D3‾\overline{\text{D}3}-induced geometric inflation. A critical ingredient in this type of models is the coupling of the inflaton and Polonyi (supersymmetry-breaking) field in the K\"ahler potential, which is needed to build the inflaton potential. We point out the same coupling let the inflaton dominantly decay into a pair of inflatino and gravitino causing the gravitino problem. We propose some possible solutions to this problem.Comment: 14 pages; accepted by PLB, title and abstract changed to clarify the topic, conclusion not changed, references adde

    Architecture of a distributed multimission operations system

    Get PDF
    This paper presents an architecture to develop a multimission operations systems, which we call DIOSA. In this architecture, a component used as a building block is called a functional block. Each functional block has a standard structure, and the interface between functional blocks are defined with a set of standard protocols. This paper shows the structure of the database used by functional blocks, the structure of interfaces between functional blocks, and the structure of system management. Finally, examples of typical functional blocks and an example of a system constructed with this architecture is shown
    • …
    corecore