20 research outputs found

    Clinical outcome of patients with recurrent or refractory localized Ewing's sarcoma family of tumors: A retrospective report from the Japan Ewing Sarcoma Study Group

    Get PDF
    [Background] Patients with Ewing's sarcoma family of tumors (ESFT) who experience relapse or progression have a poor prognosis. [Aim] This study aimed to identify the prognostic and therapeutic factors affecting overall survival (OS) of patients with recurrent or refractory localized ESFT. [Methods and results] Thirty-eight patients with localized ESFT who experienced first relapse or progression between 2000 and 2018 were retrospectively reviewed. The 5-year OS rate of the entire cohort was 48.3% (95% confidence interval, 29.9%-64.5%). Multivariate analysis of OS identified time to relapse or progression, but not stem cell transplantation (SCT), as the sole independent risk factor (hazard ratio, 35.8; P = .002). Among 31 patients who received salvage chemotherapy before local treatment, 21 received chemotherapy regimens that are not conventionally used for newly diagnosed ESFT. The objective response rate to first-line salvage chemotherapy was 55.2% in the 29 evaluable patients. Time to relapse or progression was significantly associated with response to first-line salvage chemotherapy (P = .006). [Conclusions] The present study fails to demonstrate significant clinical benefit of SCT for recurrent or refractory localized ESFT. Recently established chemotherapy regimens may increase the survival rate of patients with recurrent or refractory localized ESFT while attenuating the beneficial effect of SCT

    Cysteine Nucleophiles in Glycosidase Catalysis : Application of a Covalent β-L-Arabinofuranosidase Inhibitor

    Get PDF
    The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)(3)(Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived beta-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This beta-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.Medical BiochemistryBio-organic Synthesi

    Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community

    No full text

    Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121.

    No full text
    Enzymes acting on α-L-arabinofuranosides have been extensively studied; however, the structures and functions of β-L-arabinofuranosidases are not fully understood. Three enzymes and an ABC transporter in a gene cluster of Bifidobacterium longum JCM 1217 constitute a degradation and import system of β-L-arabinooligosaccharides on plant hydroxyproline-rich glycoproteins. An extracellular β-L-arabinobiosidase (HypBA2) belonging to the glycoside hydrolase (GH) family 121 plays a key role in the degradation pathway by releasing β-1,2-linked arabinofuranose disaccharide (β-Ara2) for the specific sugar importer. Here, we present the crystal structure of the catalytic region of HypBA2 as the first three-dimensional structure of GH121 at 1.85 Å resolution. The HypBA2 structure consists of a central catalytic (α/α)6 barrel domain and two flanking (N- and C-terminal) β-sandwich domains. A pocket in the catalytic domain appears to be suitable for accommodating the β-Ara2 disaccharide. Three acidic residues Glu383, Asp515, and Glu713, located in this pocket, are completely conserved among all members of GH121; site-directed mutagenesis analysis showed that they are essential for catalytic activity. The active site of HypBA2 was compared with those of structural homologs in other GH families: GH63 α-glycosidase, GH94 chitobiose phosphorylase, GH142 β-L-arabinofuranosidase, GH78 α-L-rhamnosidase, and GH37 α,α-trehalase. Based on these analyses, we concluded that the three conserved residues are essential for catalysis and substrate binding. β-L-Arabinobiosidase genes in GH121 are mainly found in the genomes of bifidobacteria and Xanthomonas species, suggesting that the cleavage and specific import system for the β-Ara2 disaccharide on plant hydroxyproline-rich glycoproteins are shared in animal gut symbionts and plant pathogens

    Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways

    No full text
    The assembly and maturation of the early life microbiome has life-long effects on human health. Here, the authors combine omics, functional assays and structural analyses to characterize the catabolic pathways that support the growth of butyrate producing Clostridiales members from the Roseburia and Eubacterium, on distinct human milk oligosaccharides

    Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum

    Get PDF
    Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities

    Molecular marker identification for relapse prediction in 5-FU-based adjuvant chemotherapy in gastric and colorectal cancers.

    Get PDF
    To confirm the clinical significance of NF-κB and JNK protein expression from experimentally identified candidates for predicting prognosis for patients with 5-FU treatment, we evaluated the protein expression of surgically removed specimens. A total of 79 specimens were obtained from 30 gastric and 49 colorectal cancer patients who underwent R0 resection followed by postoperative 5-FU based adjuvant chemotherapy. Immunohistochemical examinations of NF-κB and JNK on tissue microarrays (TMAs) revealed that significantly shorter time-to-relapse (TTR) in both NF-κB(+) and JNK(-) subgroups in both gastric (NF-κB(+), p = 0.0002, HR11.7. 95%CI3 3.2-43.4; JNK(-), p = 0.0302, HR4.4, 95%CI 1.2-16.6) and colon (NF-κB(+), p = 0.0038, HR36.9, 95%CI 3.2-426.0; JNK(-), p = 0.0098, HR3.2, 95%CI 1.3-7.7) cancers. These protein expression patterns also show strong discriminately power in gastric cancer patients for overall survival rate, suggesting a potential utility as prognostic or chemosensitivity markers. Baseline expression of these proteins using gastric cancer cell lines demonstrated the reciprocal patterns between NF-κB and JNK, while 5-FU exposure of these cell lines only induced NF-κB, suggesting that NF-κB plays a dominant role in the response to 5-FU. Subsequent siRNA experiments confirmed that gene knockdown of NF-κB increased 5-FU-specific sensitivity, whereas that of JNK did not affect the chemosensitivity. These results suggest that the expression of these proteins may aid in the decisions involved with adjuvant chemotherapy for gastrointestinal tract cancers

    Identification and characterization of endo-α-, exo-α-, and exo-β-d-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria

    No full text
    Abstract The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of d-arabinose, the enantiomer of the typical l-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-d-arabinanases, GH172 exo-α-d-arabinofuranosidase, and GH116 exo-β-d-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex d-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and β-d-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these d-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity

    A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem

    Get PDF
    Mucinolytic bacteria modulate host–microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum. [Figure not available: see fulltext.]
    corecore