220 research outputs found

    The Optimization of Jaw Crusher with Complex Motion Aimed at Reducing Stroke Feature Value of Its Outlet

    Full text link
    Volume 8 Issue 1 (January 201

    The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae

    Get PDF
    Antimicrobial peptides are essential to the innate immune defense of the mammal against bacterial infection. However, pathogenic bacteria have evolved multiple strategies to resist and evade antimicrobial peptides, which is vital to bacterial survival and colonization in hosts. PR-39 is a linear porcine antimicrobial peptide containing 39 amino acid residues with a high proline content. Resistance to antimicrobial peptide PR-39 has been observed in Actinobacillus pleuropneumoniae. However, little is known about the factors required for this resistance. In the present study, PR-39 exposure increased the expression of the sapA gene in A. pleuropneumoniae. The sapA gene, which encodes a putative peptide transport periplasmic protein, was deleted from this bacterium. The ΔsapA mutant showed increased sensitivity to PR-39 compared to the wild-type MD12 and complemented PΔsapA strains. However, the ΔsapA mutant did not exhibit any alterations in outer membrane integrity. Scanning electron microscopy showed that the ΔsapA mutant displayed morphological defects, as indicated by a deformed and sunken shape after PR-39 treatment. In addition, disruption of the SapA protein led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. Collectively, these data suggest that SapA acts as one mechanism for A. pleuropneumoniae to counteract PR-39-mediated killing. To the best of our knowledge, this is the first study to show a mechanism underlying antimicrobial peptide resistance in A. pleuropneumoniae

    ATP6L promotes metastasis of colorectal cancer by inducing epithelial-mesenchymal transition

    Get PDF
    ATP6L, the C subunit of the V-ATPase V0 domain, is involved in regulating the acidic tumor micro-environment and may promote tumor progression. However, the expression and functional role of ATP6L in tumors have not yet been well explored. In this study, we found that ATP6L protein overexpression was related to colorectal cancer histological differentiation (P <0.001), presence of metastasis (P <0.001) and recurrence (P = 0.02). ATP6L expression in the liver metastatic foci was higher than in the primary foci (P = 0.04). ATP6L expression was notably concomitant with epithelial-mesenchymal transition (EMT) immunohistochemical features, such as reduced expression of the epithelial marker E-cadherin (P = 0.021) and increased expression of the mesenchymal marker vimentin (P = 0.004). Results of in vitro and in vivo experiments showed that ATP6L expression could alter cell morphology, regulate EMT-associated protein expression, and enhance migration and invasion. The effect of ATP6L on metastasis was further demonstrated in a tail vein injection mice model. In addition, the mouse xenograft model showed that ATP6L-overexpressing HCT116 cells grew into larger tumor masses, showed less necrosis and formed more micro-vessels than the control cells. Taken together, our results suggest that ATP6L promotes metastasis of colorectal cancer by inducing EMT and angiogenesis, and is a potential target for tumor therapy

    Effect of Adenosine 5’-Diphosphate Ribosylation on Meat Quality of Qinchuan Cattle

    Get PDF
    This study addressed the effect of adenosine 5’-diphosphate (ADP) ribosylation on the mitochondrial function and quality of Qinchuan cattle meat during early postmortem aging. The Longissimus dorsi muscle of Qinchuan cattle treated with 20 µmol/L rucaparib, a poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, were evaluated for mitochondrial indices, myofibrillar fragmentation index (MFI), shear force, pH, and other quality indices after being stored for 0 h, 6 h, 12 h, 2 d, 4 d, and 8 d and the expression levels of PARP1 and desmin were detected using Western blot. The results showed that the content of reactive oxygen species (ROS) in the treated group was significantly lower than that in the control group (P < 0.05) during 0 h–8 d (except 12 h) after slaughter. The caspase-3 activity and MFI in the treated group were significantly lower than those in the control group (P < 0.05) during 0–12 h. Mitochondrial membrane potential during 2–4 d as well as succinate dehydrogenase (SDH) activity during 4–8 d were significantly higher in the treated group than in the control group (P < 0.05). These findings indicate that PARP1 inhibition, which characterizes ADP ribosylation, can slow down the decrease in mitochondrial membrane potential and increase SDH activity, preserving mitochondrial function to some extents and delaying the decrease in MFI and the degradation of desmin and thereby meat tenderization

    Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets

    Get PDF
    Dietary fiber (DF) is increasingly thought to regulate diversity of piglet gut microbiota to alleviate weaning stress in piglets. This study was conducted to investigate the effects of DF on growth performance of piglets and composition of their gut microbiota, as well as the interaction between gut microbiota and short-chain fatty acids (SCFAs) in piglets. A total of 840 piglets were allocated to three dietary treatments consisting of a control group (CG), an alfalfa meal group (AG), and a commodity concentrated fiber group (OG) in a 30-day feeding trial. Gut mucosa and feces samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. Fiber treatment had a positive effect on growth performance and metabolism of SCFAs in piglets, in particular, compared with CG, the diarrhea rate was significantly decreased, and the content of propionic acid (PA) in the cecum was markedly increased in AG. The Shannon indices of the jejunum microbiota in AG were higher than CG. At the genus level, compared to CG, in the duodenum, the relative abundance of Paenibacillus in AG and OG was higher; in the jejunum, the relative abundances of Bacillus, Oceanobacillus, Paenibacillus, Lactococcus, Enterococcus, and Exiguobacterium were higher, whereas the relative abundance of Mycoplasma was lower in AG; in the cecum, there was also lower relative abundance of Helicobacter in AG and OG, and furthermore, the relative abundance of Faecalibacterium in OG was higher than in CG and AG. Spearman correlation analysis showed that Pseudobutyrivibrio was positively correlated with acetic acid, PA, and butyric acid (BA), while Bacteroides and Anaerotruncus were negatively correlated with PA and BA. In addition, microbiota analyses among different intestine segments showed distinct differences in microbiota between the proximal and distal intestines. Bacteria in the proximal segments were mainly Firmicutes, while bacteria in the distal segments were mainly Bacteroidetes and Firmicutes. Overall, these findings suggested that DF treatment could reduce the diarrhea rate of piglets and had beneficial effects on gut health, which might be attributed to the alteration in gut microbiota induced by DF and the interaction of the gut microbiota with SCFAs

    Roughage quality determines the production performance of post-weaned Hu sheep via altering ruminal fermentation, morphology, microbiota, and the global methylome landscape of the rumen wall

    Get PDF
    Roughage quality is a crucial factor influencing the growth performance and feeding cost of ruminants; however, a systematic investigation of the mechanisms underlying this is still lacking. In this study, we examined the growth performance, meat quality, ruminal fermentation parameters, rumen microbiome, and tissue methylomes of post-weaned Hu sheep fed low- or high-quality forage-based diets. Our results showed that sheep in the alfalfa hay (AG) and peanut vine (PG) groups exhibited better growth performance, slaughter performance, and meat quality than sheep in the wheat straw group (WG). The sheep in the AG possessed relatively higher contents of serum immunoglobins (IgA, IgG, and IgM) and lower contents of serum inflammation factors (TNF-α, IL-1β, IL-6, and IL-8) than those in the WG and the PG did. In addition, the levels of blood T lymphocytes (CD4+ and CD8+) and the CD4-to-CD8 ratio were significantly higher in the AG sheep than in the WG sheep and PG sheep. The concentration of ruminal NH3-N was highest in WG sheep, whereas the concentrations of individual and total short-chain fatty acids (SCFAs) were highest in the PG sheep. The length, width, and surface area of ruminal papillae were markedly different among the three groups, with the sheep in the PG being the most morphologically developed. The main ruminal microbes at the genus level include Prevotella 1, Rikenellaceae RC9 gut group, norank f F082, Ruminococcus 1, and Ruminococcus 2. The relative abundances of certain species are positively or negatively associated with fermentation parameters and growth index. For example, the fibrolytic bacteria Ruminococcaceae UGG-001 showed positive relationships with the concentration of SCFAs, except propionate. In addition, the relative abundances of fibrolytic bacteria (e.g., Ruminoccus 1) showed a negative relationship with starch-degrading bacteria (e.g., Prevotellaceae). The genome-wide DNA methylation analysis revealed that rumen tissues in the PG sheep and WG sheep occupied different global DNA methylomes. The genes with differentially methylated promoters were involved in known pathways (e.g., the FoxO signaling pathway) and the Gene Ontology (GO) terms (e.g., anatomical structure morphogenesis) pertaining to rumen development. Two candidate genes (ACADL and ENSOARG00020014533) with hyper- and hypo-methylated promoters were screened as potential regulators of rumen development. In conclusion, roughage quality determines sheep growth performance via directly influencing rumen fermentation and microbiome composition, and indirectly affecting rumen development at the epigenetic level

    Pasture intake protects against commercial diet-induced lipopolysaccharide production facilitated by gut microbiota through activating intestinal alkaline phosphatase enzyme in meat geese

    Get PDF
    IntroductionDiet strongly affects gut microbiota composition, and gut bacteria can influence the intestinal barrier functions and systemic inflammation through metabolic endotoxemia. In-house feeding system (IHF, a low dietary fiber source) may cause altered cecal microbiota composition and inflammatory responses in meat geese via increased endotoxemia (lipopolysaccharides) with reduced intestinal alkaline phosphatase (ALP) production. The effects of artificial pasture grazing system (AGF, a high dietary fiber source) on modulating gut microbiota architecture and gut barrier functions have not been investigated in meat geese. Therefore, this study aimed to investigate whether intestinal ALP could play a critical role in attenuating reactive oxygen species (ROS) generation and ROS facilitating NF-κB pathway-induced systemic inflammation in meat geese.MethodsThe impacts of IHF and AGF systems on gut microbial composition via 16 sRNA sequencing were assessed in meat geese. The host markers analysis through protein expression of serum and cecal tissues, hematoxylin and eosin (H&amp;E) staining, localization of NF-қB and Nrf2 by immunofluorescence analysis, western blotting analysis of ALP, and quantitative PCR of cecal tissues was evaluated.Results and DiscussionIn the gut microbiota analysis, meat geese supplemented with pasture showed a significant increase in commensal microbial richness and diversity compared to IHF meat geese demonstrating the antimicrobial, antioxidant, and anti-inflammatory ability of the AGF system. A significant increase in intestinal ALP-induced Nrf2 signaling pathway was confirmed representing LPS dephosphorylation mediated TLR4/MyD88 induced ROS reduction mechanisms in AGF meat geese. Further, the correlation analysis of top 44 host markers with gut microbiota showed that artificial pasture intake protected gut barrier functions via reducing ROS-mediated NF-κB pathway-induced gut permeability, systemic inflammation, and aging phenotypes. In conclusion, the intestinal ALP functions to regulate gut microbial homeostasis and barrier function appear to inhibit pro-inflammatory cytokines by reducing LPS-induced ROS production in AGF meat geese. The AGF system may represent a novel therapy to counteract the chronic inflammatory state leading to low dietary fiber-related diseases in animals

    Postmortem Degradation of Qinchuan Beef Protein by Proteasome and Its Mediated Ubiquitin-Proteasome Pathway

    Get PDF
    In this study, the Longissimus dorsi muscle of Qinchuan cattle was injected with the proteasome inhibitor MG-132 immediately postmortem and then stored at 4 ℃. The effect of the ubiquitin-proteasome pathway (UPP) on protein degradation as well as changes in the proteasome activity, ubiquitin content and microstructure of the muscle during postmortem storage was explored in order to provide theoretical support for precise postmortem regulation of beef quality. With the extension of storage time, proteasome activity was lower and the contents of total soluble protein and ubiquitin were higher in the MG-132 group than in the control group. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the band intensity of total soluble proteins between 40 and 250 kDa was greater in the MG-132 group than in the control group; muscle structure was better preserved in the MG-132 group, and the Z line and the boundary between light and dark bands were clearer than those in the control group. The contents of total soluble protein and ubiquitin showed a significantly positive correlation (P < 0.05). In conclusion, postmortem injection of MG-132 inhibited the proteasome activity and the degradation of ubiquitinated proteins in the UPP in Qinchuan beef, which in turn altered protein degradation and attenuated muscle damage. This suggests that the UPP has a potential role in meat quality formation; the proteasome not only degrades proteins by itself alone to destroy beef myofibrillar structure, but also influences postmortem beef protein degradation through mediating the UPP, ultimately affecting postmortem beef quality

    Impact of continuous pharmaceutical care led by clinical pharmacists during transitions of care on medication adherence and clinical outcomes for patients with coronary heart disease: a prospective cohort study

    Get PDF
    Objectives: The study aimed to explore the impact of a continuous pharmaceutical care (CPC) program during care transitions on medication adherence and clinical outcomes for patients with coronary heart disease (CHD).Methods: A prospective cohort study was conducted from April 2020 to February 2021. Patients diagnosed with CHD were selected and divided into intervention (CPC) and usual care (UC) groups by nurses at equal intervals based on admission time. The intervention group received CPC services provided by clinical pharmacists (including medication reconciliation, disease education, medication guidance, lifestyle counseling, and follow-up services) and usual care. The UC group received only routine medical care. The study compared medication adherence, clinical indicators (low-density lipoprotein cholesterol [LDL-C], blood pressure [BP], glycated hemoglobin [HbA1c] control rates), the incidence of adverse drug reactions (ADRs), and readmission rates (overall, major adverse cardiovascular events [MACEs]-related, and CHD risk factors-related) at admission and 1, 3, and 6 months after discharge between the two groups.Results: A total of 228 patients with CHD completed the study, including 113 patients in the CPC group and 115 patients in the UC group. There were no significant differences (p &gt; 0.05) in both groups in demographic and clinical characteristics at baseline. A total of 101 drug-related problems were identified in the CPC group (an average of 0.89 per person). The CPC group showed significantly higher medication adherence at 1, 3, and 6 months after discharge than the UC group (p &lt; 0.05). At 3 and 6 months after discharge, the intervention group had significantly higher control rates of LDL-C (61.11% vs. 44.64% at 3 months, 78.18% vs. 51.43% at 6 months), and BP (91.15% vs. 77.39% at 3 months, 88.50% vs. 77.19% at 6 months). The CPC group had higher HbA1c control rates (53.85% vs. 34.21% at 3 months, 54.05% vs. 38.46% at 6 months) than the UC group. However, the differences were not statistically significant. The incidence of ADRs 6 months after discharge was significantly lower in the CPC group than in the UC group (5.13% vs. 12.17%, p &lt; 0.05). The CPC group had a lower overall readmission rate (13.27% vs. 20.00%), MACE-related readmission rate (5.31% vs. 12.17%), and readmission rate related to CHD risk factors (0.88% vs. 2.61%) 6 months after discharge compared to the UC group. However, these differences were not statistically significant (p &gt; 0.05).Conclusion: CPC led by clinical pharmacists during care transitions effectively improved medication adherence, safety, and risk factor control in patients with CHD
    • …
    corecore