285 research outputs found

    Approaches to the low grade metamorphic history of the karakaya complex by chlorite mineralogy and geochemistry

    Get PDF
    In this study, chlorite is used to investigate the diagenetic-metamorphic evolution and accurate geological history of the different units belonging to the Karakaya complex, Turkey. Primary and secondary chlorite minerals in the very low-grade metamorphic rocks display interference colors of blue and brown and an appearance of optical isotropy. Chlorites are present in the matrix, pores, and/or rocks units as platy/flaky and partly radial forms. X-ray diffraction (XRD) data indicate that Mg-Fe chlorites with entirely IIb polytype (trioctahedral) exhibit a variety of compositions, such as brunsvigite-diabantite-chamosite. The major element contents and structural formulas of chlorite also suggest these were derived from both felsic and metabasic source rocks. Trace and rare earth element (REE) concentrations of chlorites increase with increasing grade of metamorphism, and these geochemical changes can be related to the tectonic structures, formational mechanics, and environments present during their generation. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    Diagenetic history of the rock units of bozkir unit controlled by the triassic rifting, Bozkır-Konya

    Get PDF
    The Bozkir Unit representing the northern edge of the Taurus Belt. It comprises from bottom to top, three distinct structural entities: the Upper Triassic pre-rift (Korualan Group), the Upper Triassic-Upper Cretaceous syn-rift (Huglu Group) and the Jurassic-Cretaceous Boyali Tepe Group as to their structural settings. The Korualan Group is represented by the alternations of carbonate (limestone, dolomitic limestone, dolomite) with radiolarite and chert intercalations and clastic rocks (sandstone, siltstone, mudstone, shale). The Huglu Group is made up of volcanic (basalt, andesite) and pyroclastic (tuffaceous sandstone) rocks including radyolarite, limestone and clastic rock (sandstone, siltstone, shale) intercalations. The Boyali Tepe Group is completely made of carbonate rocks. The carbonate-silisiclastic-volcanogenic rocks of the Bozkir Unit contain carbonate (calcite, dolomite), quartz, feldspar (plagioclase, anortoclase), phyllosilicate (illite, chlorite, mixed-layered illite-chlorite/I-C, chlorite-vermiculite/C-V, chlorite-smectite/C-S, rarely smectite), augite, hematite, analcime and heulandite in order of abundance. On the basis of illite Kübler Index data; Korualan Group and Huglu Group re?ect low grade diagenetic, high grade diagenetic and high grade diagenetic-anchizonal characteristics, respectively. The illite/micas of the pre-rift units and units related to the rifting have muscovitic, and phengitic and seladonitic compositions, respectively. The distributions of chondrite-normalized trace and rare earth element (REE) contents in the illites present similar trends for Korulan ve Huglu groups, but the quantities of these elements slightly increase in the Huglu Group. δ18O-dD isotopic compositions of water forming the illite minerals are different than that of sea water and found to be between Eastern Mediterranean Meteoric Water (EMMW) and magmatic water compositions. It also shows that temperature of the water forming the illite minerals varies from low to high values. The fndings from the rocks of Bozkir Unit suggest that pre-and syn-rift units have different mineralogical-petrographical and geochemical properties. The younger units within the rift due to extension and crustal thinning related to rifting must have exposed in higher diagenetic conditions by more burial and heat with respect to older units at the edges

    Measurements of proton induced reaction cross sections on 120Te for the astrophysical p-process

    Full text link
    The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % isotopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and SS factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.Comment: 17 pages, 5 figures, 5 tables, regular articl

    Variant‐specific effects of GBA1 mutations on dopaminergic neuron proteostasis

    Get PDF
    Glucocerebrosidase 1 (GBA1) mutations are the most important genetic risk factors for Parkinson's disease (PD). Clinically, mild (e.g., p.N370S) and severe (e.g., p.L444P and p.D409H) GBA1 mutations have different PD phenotypes, with differences in age at disease onset, progression, and the severity of motor and non‐motor symptoms. We hypothesize that GBA1 mutations cause the accumulation of α‐synuclein by affecting the cross‐talk between cellular protein degradation mechanisms, leading to neurodegeneration. Accordingly, we tested whether mild and severe GBA1 mutations differentially affect the degradation of α‐synuclein via the ubiquitin–proteasome system (UPS), chaperone‐mediated autophagy (CMA), and macroautophagy and differentially cause accumulation and/or release of α‐synuclein. Our results demonstrate that endoplasmic reticulum (ER) stress and total ubiquitination rates were significantly increased in cells with severe GBA1 mutations. CMA was found to be defective in induced pluripotent stem cell (iPSC)‐derived dopaminergic neurons with mild GBA1 mutations, but not in those with severe GBA1 mutations. When examining macroautophagy, we observed reduced formation of autophagosomes in cells with the N370S and D409H GBA1 mutations and impairments in autophagosome–lysosome fusion in cells with the L444P GBA1 mutation. Accordingly, severe GBA1 mutations were found to trigger the accumulation and release of oligomeric α‐synuclein in iPSC‐derived dopaminergic neurons, primarily as a result of increased ER stress and defective macroautophagy, while mild GBA1 mutations affected CMA, which is mainly responsible for the degradation of the monomeric form of α‐synuclein. Overall, our findings provide new insight into the molecular basis of the clinical variability in PD associated with different GBA1 mutations

    Hepatocyte-specific contrast-enhanced MRI findings of focal nodular hyperplasia-like nodules in the liver following chemotherapy in pediatric cancer patients

    Get PDF
    PURPOSEWe aimed to assess the MRI findings and follow-up of multiple focal nodular hyperplasia (FNH)- like lesions in pediatric cancer patients diagnosed by imaging findings.METHODSWe retrospectively analyzed clinical data and MRI examinations of 16 pediatric patients, who had been scanned using gadoxetate disodium (n=13) and gadobenate dimeglumine (n=3). Hepatic nodules were reviewed according to their number, size, contour, T1- and T2-weighted signal intensities, arterial, portal, delayed and hepatobiliary phase enhancement patterns. Follow-up images were evaluated for nodule size, number, and appearance.RESULTSAll 16 patients received chemotherapy in due course. Time interval between the initial diagnosis of cancer and detection of the hepatic nodule was 2–14 years. Three patients had a single lesion, 13 patients had multiple nodules. The median size of the largest nodules was 19.5 mm (range, 8–41 mm). Among 16 patients that received hepatocyte-specific agents, FNH-like nodules appeared hyperintense in 11 and isointense in 5 on the hepatobiliary phase. During follow-up, increased number and size of the nodules were seen in 4 patients. The nodules showed growth between 6–15 mm.CONCLUSIONLiver MRI using hepatocyte-specific agents is a significant imaging method for the diagnosis of FNH-like lesions, which can occur in a variety of diseases. Lesions can increase in size and number in pediatric patients

    Beyond Modes: Building a Secure Record Protocol from a Cryptographic Sponge Permutation

    Get PDF
    Abstract. BLINKER is a light-weight cryptographic suite and record protocol built from a single permutation. Its design is based on the Sponge construction used by the SHA-3 algorithm KECCAK. We examine the SpongeWrap authen-ticated encryption mode and expand its padding mechanism to offer explicit do-main separation and enhanced security for our specific requirements: shared se-cret half-duplex keying, encryption, and a MAC-and-continue mode. We motivate these enhancements by showing that unlike legacy protocols, the resulting record protocol is secure against a two-channel synchronization attack while also having a significantly smaller implementation footprint. The design facilitates security proofs directly from a single cryptographic primitive (a single security assump-tion) rather than via idealization of multitude of algorithms, paddings and modes of operation. The protocol is also uniquely suitable for an autonomous or semi-autonomous hardware implementation of protocols where the secrets never leave the module, making it attractive for smart card and HSM designs

    The stable free rank of symmetry of products of spheres

    Full text link
    A well known conjecture in the theory of transformation groups states that if p is a prime and (Z/p)^r acts freely on a product of k spheres, then r is less than or equal to k. We prove this assertion if p is large compared to the dimension of the product of spheres. The argument builds on tame homotopy theory for non simply connected spaces.Comment: 30 pages; improved exposition, some details adde

    Palaeozoic-Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent

    Get PDF
    <p>We have carried out a several-year-long study of the Amanos Mountains, on the basis of which we present new sedimentary and structural evidence, which we combine with existing data, to produce the first comprehensive synthesis in the regional geological setting. The ca. N-S-trending Amanos Mountains are located at the northwesternmost edge of the Arabian plate, near the intersection of the African and Eurasian plates. Mixed siliciclastic-carbonate sediments accumulated on the north-Gondwana margin during the Palaeozoic. Triassic rift-related sedimentation was followed by platform carbonate deposition during Jurassic-Cretaceous. Late Cretaceous was characterised by platform collapse and southward emplacement of melanges and a supra-subduction zone ophiolite. Latest Cretaceous transgressive shallow-water carbonates gave way to deeper-water deposits during Palaeocene-Eocene. Eocene southward compression, reflecting initial collision, resulted in open folding, reverse faulting and duplexing. Fluvial, lagoonal and shallow-marine carbonates accumulated during Late Oligocene(?)-Early Miocene, associated with basaltic magmatism. Intensifying collision during Mid-Miocene initiated a foreland basin that then infilled with deep-water siliciclastic gravity flows. Late Miocene-Early Pliocene compression created mountain-sized folds and thrusts, verging E in the north but SE in the south. The resulting surface uplift triggered deposition of huge alluvial outwash fans in the west. Smaller alluvial fans formed along both mountain flanks during the Pleistocene after major surface uplift ended. Pliocene-Pleistocene alluvium was tilted towards the mountain front in the west. Strike-slip/transtension along the East Anatolian Transform Fault and localised sub-horizontal Quaternary basaltic volcanism in the region reflect regional transtension during Late Pliocene-Pleistocene (<4 Ma).</p
    corecore