40 research outputs found

    Influence of Sheet Conditions on In-Plane Strain Evolution via Ex-Situ Tensile Deformation of Ti-3Al-2.5V at Room Temperature

    Get PDF
    Localised plastic deformation evolution was examined in a near alpha Ti-3Al-2.5V alloy with indent defect and defect free surfaces using digital image correlation, an interrupted uniaxial tensile test and scanning electron microscopy. The main aim was to understand the role of the localised strain evolution at micro scale and the underlying deformation mechanisms that influence the global mechanical behaviour of the material. The microstructures captured at different stages of deformation were processed using a digital image correlation system, whose outputs were analysed through Matlab, to ascertain the localised strain evolution observed in each surface condition. This work found that the strains observed at the deformation bands along the indent defect edge, were significantly higher than those observed in the deformed β phase field. The deformation bands concentrating at the tip of the indent defect acted as a fertile site for early crack nucleation and propagation with a reduced localised fracture strain. For a defect free surface, the absence of defect zones acting as a high stress concentration site meant that strain aggregation was minimised and the α phase field was able to sufficiently accommodate the β phase deformation resulting in higher fracture strains

    Examining failure behaviour of commercially pure titanium during tensile deformation and hole expansion test

    Get PDF
    Hole expansion ratio is a material parameter which defines the extent to which sheet metals are formed. Research has shown that, the stress state observed at the hole edge after hole expansion test is similar to those observed during conventional uniaxial tensile test. However, conventional tensile test methods are not efficient in evaluating material edge formability. This work utilised optical non-contact measuring techniques to examine failure behaviour during tensile test and hole expansion test of commercially pure titanium sheet, fabricated with either abrasive water jet cutting or electric discharge machining. The work found that, the deformation mode in conventional tensile testing are governed by localised necking and subsequently diffused necking prior to failure. Deformation mode observed in hole expansion test is characterised by localised necking with no visible occurrence of diffused necking prior to failure. The highest strains are concentrated at the hole edge during hole expansion test due to their sensitivity to the hole preparation method with accompanying multiple localised necking sites resulting in non-uniform deformation. Strains become concentrated in the bulk material microstructure rather than the machined edge during tensile testing resulting in single localised deformation site and a more homogenous deformation

    Optimisation of laser assisted forming conditions for improved formability of aerospace materials

    Get PDF
    ISF technology was gradually considered as a manufacturing technology for fabricating sheet metal parts for both commercial and military aircraft. However, many challenges remain with respect to improving the consistency of the process, such as part thinning and springback. This is especially critical for two phase titanium alloy Ti-6AL-4V which has limited formability at room temperature. Therefore, understanding the correlation of laser system parameters and material properties is a key aspect for successful ISF of non-fractured Ti-6AL-4V. The laser heating is modelled to find the relationships between laser power, beam radius, scan speed, and the resultant temperature. The analysis shows that the temperature from laser heating increases with an increase in power, decreases significantly with an increase in beam radius, and decreases slightly with an increase in scan speed

    Prediction of hole expansion ratio of titanium alloys using R programming

    Get PDF
    The hole expansion ratio (HER) is an important material property which defines the extent of edge formability of sheet metals. The stress states observed at the hole edge after the hole expansion test are similar to those seen during traditional uniaxial tensile deformation. This observation has provoked research, directed at ascertaining a correlation between the HER and tensile properties. In order to account for the forming behaviour of complex materials like titanium, a highly robust model that takes into account the material formability in all sheet-processing directions must be considered. The R programming language was used in this research to build a model fitting expression capable of predicting the HER as well as generating a regression model equation for titanium alloys, based on their thickness and Erichsen index number. The proposed regression model equation for predicting HER of titanium alloys exhibited an excellent statistical significance (p= 0.00076), indicating the robustness of the model fitting expression to predict HER values of titanium alloys. An accompanying adjusted R squared value of 0.9987 for the generated regression model equation also shows how well the regression line fits the data for accurate prediction of the HER of titanium alloys. A numerical validation analysis of the strength of the relationship derived between the predicted and the experimental HERs gave a correlation coefficient of 0.9884. This result shows a strong linear relationship between the experimental and predicted HER values of the titanium alloys with an average absolute error of 8.8%

    Impact of machining induced surface defects on the edge formability of commercially pure titanium sheet at room temperature

    Get PDF
    Despite the good properties of titanium which have drawn the interest of various industries over the years, one of the major drawbacks of this material is its poor machinability. This has largely been attributed to its low thermal conductivity and elastic modulus. The ability to attain optimum sheet edge performance during forming is dependent on the quality of the edges produced. Also, the demanding nature of aerospace part design has provoked the interest of both industry and academia to continually explore avenues tailored at enhancing part performance. The sort of edge surface integrity produced for aerospace part fabrication thus becomes a vital consideration in the quest to ensuring prime performance of components. This work seeks to study the influence of different machining induced surface defects on the sheet edge performance of CP-Ti (Grade 2) at room temperature. Hole expansion test was used to assess the edge surface formability of CP-Ti with different machining induced edge defects. The research found that, machining induced surface defects act as stress concentration sites during the hole expansion test and have a major impact on the material flow. Electro-discharge machined edges were observed to exhibit high edge formability compared to laser and abrasive water jet cut edges due to the impact of machining induced microstructural changes

    Automated microstructural analysis of titanium alloys using digital image processing

    Get PDF
    Titanium is a material that exhibits many desirable properties including a very high strength to weight ratio and corrosive resistance. However, the specific properties of any components depend upon the microstructure of the material, which varies by the manufacturing process. This means it is often necessary to analyse the microstructure when designing new processes or performing quality assurance on manufactured parts. For Ti6Al4V, grain size analysis is typically performed manually by expert material scientists as the complicated microstructure of the material means that, to the authors knowledge, no existing software reliably identifies the grain boundaries. This manual process is time consuming and offers low repeatability due to human error and subjectivity. In this paper, we propose a new, automated method to segment microstructural images of a Ti6Al4V alloy into its constituent grains and produce measurements. The results of applying this technique are evaluated by comparing the measurements obtained by different analysis methods. By using measurements from a complete manual segmentation as a benchmark we explore the reliability of the current manual estimations of grain size and contrast this with improvements offered by our approach

    The influence of the microstructure morphology of two phase Ti-6Al-4V alloy on the mechanical properties of diffusion bonded joints

    Get PDF
    The influence of ultra fine grained (UFG) and coarse grained (CG) microstructure of the titanium alloy Ti-6Al-4V on the strength of a diffusion bonded (DB) joint was studied using a laboratory DB fixture and a new shear test rig. The DB process was carried out at 725°C and 825°C during 2 and 4 hours in a vacuum furnace. Coarsening of grain structure resulting from different DB cycles was quantified. The chain pores were observed at 725°C for both microstructure conditions bonded during 2 hours. The increase of bonding time up to 4 hours leads to subsequent elimination of the pores. The UFG samples bonded at 725°C showed a higher level of the shear strength than CG samples for both bonding times. The CG material demonstrated the highest shear strength after 4 hours of DB bonding at 825°C. The increase of the creep deformation of UFG samples when compared to the CG condition was observed as a result of DB at of 725° C during 4 hours

    Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentation

    Get PDF
    The mechanical properties of the materials are determined by the size and morphology of fine microscopic features. Quantitative microstructural analysis is a key factor to establish the correlation between the mechanical properties and the thermomechanical treatment under which material condition have been achieved. As such, microstructural analysis is a very important and complex task within the manufacturing sector. Published standards are used for metallographic analysis but typically involve extensive manual interpretation of grain boundaries, resulting in measurements that are slow to produce, difficult to repeat and highly subjective. Computer vision and the evolution of artificial intelligence (AI) in the last decade can offer solutions to such problems. Deep learning and digital image processing techniques allow digital microstructural analysis to be automated using a fast and repeatable method. This paper proposes a novel boundary class semantic segmentation approach (BCSS) to identify each phase of the microstructure and additionally estimate the location of the grain boundaries. The BCSS is then combined with more traditional segmentation techniques based on the Watershed Transform to improve the identification and measurement of each feature within the microstructure using a new, hybrid automated digital microstructure analysis (HADMA) approach. The new method is validated on a published dataset of two-phase titanium alloy microstructure pictures captured using a scanning electron microscope (SEM). Measurements match the level of accuracy of accepted manual standards and the method is demonstrated to be more reliable than other automated approaches. The influence of the subjective nature of manual labelling, required to train the proposed network, is also evaluated

    An evaluation of H13 tool steel deformation in hot forging condition

    Get PDF
    Plastic deformation is one of the causes of failure of hot forging tools, where the tool deforms to such an extent that parts formed are no longer within dimensional tolerance. Therefore, deformation of H13 tool steel that leads to transformation of the microstructure after forging Inconel 718 at high temperature and load was investigated. For this investigation nonlinear continuum mechanics 3D FE simulation Deform software, Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD) and Microhardness tests were used. The result of 3D Deform simulation shows high localised stress and high strain of 0.38 on the sharp edge of the tool. This is one of the main reasons behind tool failure as accumulation of strain during deformation at high temperature causes changes in microstructure. SEM results confirm the severe deformation and highlight three different zones of deformation, recrystallization, martensitic and transition between each zone within the microstructure. EBSD results show low angle boundaries of 1~15° which represents mainly the deformation zone and it is associated with different dislocation substructures caused by slip. Furthermore, misorientation angles 28-32° corresponds to special boundaries ∑39a which are believed were created during martensitic lattice transformation when some of the boundaries are not perfectly match the rest. These special boundaries transform to low angle boundaries. The high angle boundaries 58-60° corresponds to twin boundaries and their parent matrix

    ЭФФЕКТИВНОСТЬ ВНУТРЕННЕГО ГОСУДАРСТВЕННОГО ФИНАНСОВОГО КОНТРОЛЯ

    Get PDF
    The structural reform of the state financial control bodies brings forward the issues of assessing the control efficiency. Today, the mechanisms used to evaluate the efficiency of the financial control powers, as well as the notion of efficiency itself, are rather vague and subjective. The authors have classified and summarized the existing approaches to the assessment of the control efficiency and research findings in this sphere, identified the flaws and analyzed the reasons for poor applicability of the existing approaches in terms of current trends and problems of control activities. The generalization of existing quantitative and qualitative approaches to assessing the efficiency made it possible to classify the basic criteria that should be included in a potential model for evaluating the efficiency as well as develop additional factors that can have a significant impact on the control efficiency. The analysis of the actual performance of the state internal financial control authority and the inspections performed demonstrated the inapplicability of existing methods for assessing the efficiency of control activities. Proposals on the development of a radically new assessment model were made.В условиях реформирования структуры органов государственного финансового контроля особенно актуальными становятся вопросы оценки эффективности проводимых контрольных мероприятий. На сегодняшний день механизмы оценки эффективности реализации полномочий государственного финансового контроля, как и само понятие эффективности, достаточно расплывчаты и субъективны. Авторами структурированы и обобщены существующие подходы к оценке эффективности контрольной работы и проводимым научным исследованиям по их развитию, выявлены недостатки и проанализированы причины слабой применимости существующих подходов в условиях современных тенденций и проблематики контрольной деятельности. По результатам обобщения существующих качественных и количественных подходов к оценке эффективности проранжированы основные критерии, которые, по мнению авторов, необходимо включить в потенциальную модель оценки эффективности, а также разработаны дополнительные факторы, способные оказать существенное влияние на степень эффективности контрольной работы. На основании анализа фактических показателей результатов деятельности органа внутреннего государственного финансового контроля, а также направлений проводимых проверок продемонстрирована неприменимость существующих методов оценки эффективности контрольной работы и сформулированы предложения по формированию принципиально новой модели оценки эффективности
    corecore