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ABSTRACT
The mechanical properties of the materials are determined by the size and mor-
phology of fine microscopic features. Quantitative microstructural analysis is a 
key factor to establish the correlation between the mechanical properties and the 
thermomechanical treatment under which material condition has been achieved. 
As such, microstructural analysis is a very important and complex task within the 
manufacturing sector. Published standards are used for metallographic analy-
sis but typically involve extensive manual interpretation of grain boundaries, 
resulting in measurements that are slow to produce, difficult to repeat and highly 
subjective. Computer vision and the evolution of artificial intelligence in the past 
decade can offer solutions to such problems. Deep learning and digital image pro-
cessing techniques allow digital microstructural analysis to be automated using a 
fast and repeatable method. This paper proposes a novel boundary class seman-
tic segmentation approach (BCSS) to identify each phase of the microstructure 
and additionally estimate the location of the grain boundaries. The BCSS is then 
combined with more traditional segmentation techniques based on the Water-
shed Transform to improve the identification and measurement of each feature 
within the microstructure using a new, hybrid automated digital microstructure 
analysis approach. The new method is validated on a published dataset of two-
phase titanium alloy microstructure pictures captured using a scanning electron 
microscope. Measurements match the level of accuracy of accepted manual stand-
ards, and the method is demonstrated to be more reliable than other automated 
approaches. The influence of the subjective nature of manual labelling, required 
to train the proposed network, is also evaluated.
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Introduction

Microstructural analysis is a key factor to quality 
assurance of manufactured parts, as well as under-
standing and designing of the optimal manufacturing 
processes. By studying the microstructural morphol-
ogy, useful information about the mechanical and 
physicochemical properties of the material can be 
extracted and correlated with prior thermomechanical 
treatment of the material. In this study, micrographs of 
bimodal Ti6Al4V microstructures were used. Bimodal 
microstructure is an important microstructural condi-
tion of titanium alloy where finer grains contribute 
towards increased strength whereas coarser grains 
facilitate increased ductility [1]. Accurate quantita-
tive microstructural analysis might influence targeted 
manufacturing processes, so each part produced has 
a required microstructure and mechanical proper-
ties. This is likely to lead to fewer parts failing quality 
assurance checks, thus improving sustainability by 
minimising waste, reducing costs and time effort for 
the manufacturing sector.

Microstructural analysis can be divided into two 
groups, automated and manual. There are some 
advantages and disadvantages for both methods. Man-
ual microstructural analysis is typically performed by 
expert material scientists using global microstructural 
analysis standards such as [2, 3] to measure micro-
structural features. This approach is versatile and uses 
intuitive tools, but is prone to human error and sub-
jectivity, making measurements challenging to repeat 
consistently. If complex micrographs are analysed by 
multiple material scientists, it is expected that there 
may be significant deviations in the measurements 
[2]. Manual methods also require the most time from 
expert scientists and are harder to scale up to measur-
ing large datasets.

Automated microstructural analysis is typically per-
formed with the use of bespoke computer vision soft-
ware. The benefit of automated microstructural analy-
sis is that it avoids human error, significantly faster 
and can be repeated consistently. This kind of software 
usually utilises conventional hand-crafted algorithms 
designed for digital microstructural analysis. Some of 
the basic techniques that the traditional algorithms 
utilise to segment object in an image are based on 
mathematical morphology [4–6]. Conventional hand-
designed algorithms have proven more popular in this 
domain and can achieve good segmentation results 
even with small dataset [7–10]. Nevertheless, accurate 

result often depends upon non-trivial parameterisa-
tion of different methods within the analysis pipe-
line. For example a technique that exists to segment 
grains using mathematical morphology but achieving 
optimal results requires different filter parameters for 
each microscope type and sensitivity parameter, set 
for each dataset [7]. This adds additional steps and 
risks reintroducing user bias when compared to non-
parameterisable methods. Phase segmentation is also 
required in the pre-processing stage which is challeng-
ing for complex microstructures. Although the above 
techniques have been used for a long time, they do 
not always achieve good results in all cases. In the 
past decade, a subset of AI that is called deep learn-
ing has revolutionised automated image processing 
task in a range of different fields, such as autonomous 
driving [11] and medicine [12]. Recent object detection 
and semantic segmentation approaches have detected 
complex features with a level of accuracy seemingly 
unachievable via conventional algorithms [13, 14]. Net-
works are trained algorithmically, with the designer 
only required to provide the training algorithm with 
examples of input data and the correct solution which 
the network would be expected to achieve. Such tech-
niques are widely used for semantic segmentation of 
real-world data and have applications in driverless 
cars where it is used to identify people, cars, bikes 
and other potential obstacles [11]. The power of deep 
learning in such cases is that these features are often 
easily recognised by a human but difficult to write a 
descriptor for in terms of what precise combination 
of contrast and colour indicates their presence. There-
fore, it can be easier to train an accurate deep learning 
method than it is to design an effective conventional 
algorithm to perform the same task. For microstruc-
tural analysis, this property of semantic segmentation 
is also beneficial as many microstructural features can 
be identified by a trained eye but are difficult to define 
a precise description. This makes conventional algo-
rithms hard to design. For example material scientists 
could not be confused by the noise in the image, like 
dust or scratches for grains and platelets, yet both can 
be described as circular or elliptical shapes that differ 
in intensity from their surrounding pixels. The experts 
can recognise this as they learnt by example, not by 
strict definitions. It is that same method of learning 
that allows deep learning to perform well in such 
cases. However, the use of this technology within 
many aspects of materials science and manufacturing 
has been more limited, particularly in the automated 
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analysis of metallic microstructures. Recent reviews of 
deep learning for medical image analysis easily find 
hundreds of relevant works with access to a huge 
amount of medical data [12] within the past years [13, 
14], yet a similar review for metallographic investiga-
tion, especially on the microstructural analysis found 
a distinct lack of relevant publicly available data [15]. 
Reasons for this include limited public microstructural 
datasets, at least partially due to some industrial data 
being considered IP sensitive, as well as the substantial 
variations between different microstructural images, 
even when images are of the same material. The meth-
ods that have been proposed typically focus on global 
classification of the microstructure (i.e. globular or 
lamellar), rather than a quantitative measure of indi-
vidual features, such as grain size [16].

Previous research

A few researchers tried to implement deep learning for 
phase classification for materials microstructure such 
as iron and titanium alloys with quite good results 
achieved. Chowdhury et al. [17] presented a method 
where deep learning was used to train a network to 
make two distinctions—does the microstructure con-
tain dendrites (tree-/branch-shaped structures), and 
if it does is the cross-section studied longitudinal or 
transverse. Azimi et al. [18] proposed a deep learn-
ing method for microstructural classification in the 
example of certain microstructural constituents of 
low carbon steel with the use of fully convolutional 
neural networks (FCNN). Jang et al. [19] also used the 
residual neural networks (ResNets) to measure the 
volume fraction over acicular ferrite of carbon steel 
and distinguish it from the rest of the microstructural 
features. Very recently, Baskaran et al. [20] also used 
machine learning to classify different morphologies of 
the titanium microstructures. The network was trained 
to classify microstructural images as either lamellar, 
duplex or acicular. These authors [17–20] also pub-
lished a large dataset that was used for training and 
testing of their approach. This is extremely useful as 
the lack of public datasets is recognised problem with 
the development of machine learning techniques in 
this area [15]. This contrasts greatly in comparison 
with the medical imaging field which has far more 
datasets and wider use of the modern ones learning 
approaches [13]. The above techniques while they 
accurate detect the targeted phase, fail to distinguish 
the grain boundaries among grains without being able 

to extract useful feature information like the average 
grain size.

New approach

In this paper, we propose a novel, hybrid automated 
digital microstructural analysis (HADMA) approach 
where the abstract understanding of image features 
provided by deep learning, is combined with the pre-
cise segmentation rules of traditional hand-crafted 
algorithms. Specifically, we design and train a seman-
tic segmentation network and combine this with 
Watershed Algorithm-based segmentation techniques 
[7]. To our knowledge, the Watershed-based method 
used here has not been combined with semantic seg-
mentation approaches in prior. In addition to this, we 
propose a new strategy for training and deploying the 
semantic segmentation part of the algorithm we call 
boundary class semantic segmentation (BCSS). This 
approach incorporates additional classes in the net-
work to identify boundaries between the instances of 
each class rather than using the typical approach of 
identifying only the original classes themselves. For 
microstructure analysis, this helps separate clusters 
of, for example alpha grains into the individual grains 
by capturing information of probable boundary loca-
tions, when traditional semantic segmentation strat-
egies would identify the entire region as consistent 
of alpha grains without this alpha/alpha boundary 
information. The result from BCSS was then used as 
the input to a technique which is based on the Water-
shed Algorithm and the method [7], which improves 
the segmentation over the phases by completing the 
external–internal boundaries.

Technical background: deep learning, 
semantic segmentation and marker‑based 
Watershed

Accurate, statistical analysis of the individual features 
within images, such as individual grains of complex 
microstructures, can be achieved via image segmenta-
tion. Image segmentation is the process of classifying 
each pixel in the image such that we know either to 
which particular object or which class it belongs. For 
segmentation of objects, pixels within the same object 
should be given the same level and thus form a sin-
gle connected component (CC), from which a variety 
of measurements can be achieved using generalised 
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methods [21]. While measurement and classification of 
microstructures can be performed without segmenta-
tion [22], a segmentation facilitates statistical descrip-
tion on per grain basis and allows to produce maps 
that subsequently enable visual confirmation over the 
identified grains.

Semantic segmentation

Measurements of a segmented image are typically 
trivial; however, the process of obtaining the segmen-
tation is not. In fact, it is widely considered among 
the most challenging in image processing, as gener-
alised algorithms do not work in all domains [23–25]. 
Semantic segmentation is a deep learning method 
where the network is trained to label each pixel in an 
image according to which class of features it belongs, 
as illustrated in Fig. 1. Convolutional neural networks 
(CNN) are used for this task, and various network 
architectures have been proposed in recent years, such 
as ResNet-18, ResNet-50 U-net [26, 27]. The network 
is designed to initially iteratively downsample the 
image, using convolutional and pooling layers. Dur-
ing the process, the network uses a combination of 
weights adjust the value of each pixel/neuron. These 
weights are learnt algorithmically using machine 
learning methods such as Stochastic Gradient Descent 
or Adam Optimiser [28]; thus, the only input required 
from the user is raw data and an expected result.

The intention is that early layers in the network 
capture low-level details in the image such as edges, 
textures and simple shapes, with deeper layers cap-
turing large-scale information like complex and finer 
details [29, 30]. For microstructures, this could mean 

early layers detect changes in image intensity, subse-
quent layers identify a combination of these changes 
as a boundary and latter layers detect a combination 
of these as a grain of a particular type. Once a low-
resolution classification is reached the network will 
then upsample this result to achieve a 1-to-1 pixel map 
with the input image. This is illustrated in Fig. 2.

Marker‑based Watershed Algorithm

While semantic segmentation is proven to be effective 
in a range of applications (automotive driving [11], 
physics [31]), it only segments an image class-wise. 
This means that it will not necessarily segment each 
instance of a class, particularly when these instances 
overlap, as is often the case with globular alpha grains. 
Techniques from the area of Mathematical Morphol-
ogy [4] provide methods to segment a class into sepa-
rate instances, even when this overlap. A method 
called the Watershed Algorithm is particularly effec-
tive at this and has been recently demonstrated for 
material science applications [7, 10]. The Watershed 
Algorithm requires a transformation of an image such 
that the maximal value typically exists at boundary 
locations. The Watershed Algorithm then considers 
this as a topographic surface and floods from low to 
high values, with each flood only stopping when it 
overlaps with another, as shown in Fig. 3. Each flood 
forms a catchment basin representing an object, and 
the location where this occurs is marked as a bound-
ary. The process can be controlled by selecting markers 
from which each flood should begin [5]. We computed 
the markers for the Watershed Transform with the use 
of local maxima [32] over the distance transform [33] 

Figure  1   Different feature detections between early and latter 
layers of the ResNet-50. a An original Ti6Al4V bimodal image. 
b The 4th layer which is ReLU activation layer and the c 75th 

ReLU activation layer and d 201st ReLU activation layer. All 
three images show the strongest activation channels of each layer.
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of the inverse of the estimated boundaries, as in [7]. 
This produces one marker in approximate centres of 
each apparent grain, which is used to compute the 
segmentation. The h-maxima transform [32] is used 
to suppress noise and reduce over-segmentation prob-
lems [34].

The advantage of this algorithm is that it always 
provides a complete segmentation and always con-
tains one region per selected marker.

Although using the Watershed to segment objects 
in an image with well-defined boundaries is usu-
ally an easy task, segmenting the morphology of the 
microstructure of Ti6Al4V makes it quite challenging. 
There are conditions/microstructures, where the col-
our intensity between the two phases is very similar 
or when the alpha phase of titanium categorised into 
different classes such as globular or equiaxed alpha 
grains and alpha platelets. For instance, lath colonies 
in bimodal microstructure of Ti6Al4V consist of the 
alpha and beta phase too.

Distinguishing the globular alpha grains from 
alpha platelets of the lath colonies is one of the big-
gest challenges of this research as share similar col-
our intensity. These conditions tend to create over- 
and under-segmentation problems as well as it is 
difficult to distinguish the alpha phase classes. As a 
result, the conventional approach is not always effec-
tive in the most complex cases like the identifica-
tion of titanium’s phases in bimodal microstructure. 
In the cases, where the Watershed Algorithm does 
not segment accurately the titanium phases make 
the individual image editing important. Developing 
a new algorithm or improve the Watershed Algo-
rithm as a second-stage analysis for each challenging 
image makes the whole process a labour consuming 
task while accurate and repeatable results are not 
granted.

Figure  2   Illustration of the semantic segmentation, a input 
image of bimodal microstructure of Ti6Al4V [20], b the archi-
tecture of ResNet (features extraction), c phase detection after 

semantic segmentation (yellow colour shows the alpha equiaxed 
grains, light blue colour shows the lath colonies and the dark blue 
colour shows the grain boundaries).

Figure 3   Illustration of Watershed Algorithm, a touching objects, b minima–maxima and the boundaries and c separation of each min-
ima area.
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Method: hybrid automated digital 
microstructural analysis

A hybrid automated digital microstructural analysis 
(HADMA) pipeline is proposed and combines a novel 
semantic segmentation approach (BCSS) and grain 
segmentation (Watershed Algorithm). The semantic 
segmentation identifies each phase of material, with 
the additional boundary class introduced in this work 
also providing some separation between each grain. 
The Watershed Algorithm is used in post-processing, 
to ensure that all grains are completely separated. 
In this way, we combine the abstract understand-
ing learnt by the network, with the robustness of the 
deterministic rules of conventional algorithms. This is 
illustrated in Fig. 4.

Phase separation with semantic segmentation: 
BCSS

We proposed a new semantic segmentation approach 
called the boundary class semantic segmentation 
technique (BCSS). This consists of a multi-class 
semantic segmentation network that can provide 
greater separation than the two-class semantic seg-
mentation methodology from prior studies [17, 20] 
of each instance (grains/laths) by considering the 
boundary between grains as a unique class as a 
single-pixel error would be enough to erroneously 
merge instances. By introducing the BCSS, we man-
aged to maximise the information obtained at the 
semantic segmentation stage. When a network is 
trained to classify image features, and individual 

measurements of instances of each feature are 
required. This network is also trained to identify 
boundary pixels as additional class. So, for a 2-phase 
microstructure, then three classes would be identi-
fied by the network: phase 1, phase 2 and bounda-
ries. In this way, it is possible for a semantic network 
to learn how to partially separate touching objects 
such as grains without additional object detection 
and post-processing. Existing training approaches 
typically only train the network to identify real 
classes over the features that exist in the data. Con-
sequently, boundary pixels must be classified in 
either as the same class as the object they separate 
creating a single homogeneous region, or as part of 
another existing class in the image, so as to create 
the designed separation. This latter approach creates 
fundamental issues when training for microstruc-
tural analysis as the boundaries between touching 
objects of one class do not necessarily share proper-
ties with any other class. For example Fig. 5a shows 
that a bimodal microstructure consists of two classes 
of features, alpha and beta phase. While the alpha 
phase can be divided further into other two classes 
globular alpha and alpha platelets.

If the network was trained to identify only two 
classes, then it would be difficult for that network 
to separate individual touching alpha grains, the 
boundaries form the beta phase and the lath colonies, 
as shown in Fig. 4b. However, it is clear from this 
figure that these boundaries do not share proper-
ties with beta phase and thus attempting to train the 
network to identify them as such is problematic and 
might lead to other classification errors.

Figure 4   Pipeline for hybrid automated microstructural analysis (HADMA).
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We propose, therefore, to use a separate class to 
identify these boundaries. This decreases the inter-
class variance while also ensuring that any measure-
ment that considers the volume fraction of a particu-
lar phase is not distorted by these boundary regions 
being included in their class. The results of apply-
ing the final semantic segmentation network to the 
microstructure from Fig. 5a are shown in Fig. 6.

Grain segmentation (Watershed Algorithm)

Our proposed semantic segmentation method featur-
ing a boundary class can provide some separation of 
the grains; however, an imperfect result, such as a 
few pixels of the alpha phase being misclassified as 
boundary or when the boundary pixels are classified 
as alpha, will risk under-segmentation and errone-
ous measurements, Fig. 7.

A Watershed Algorithm can be deployed, as the 
suggested technique from [7], to correct segmen-
tation errors from possible misclassified pixels as 
well as to complete the inner boundaries. For the 
topographic function, the distance transform [33, 
34] of the globular alpha class is used, as illustrated 
in Fig. 8a, and floods the image from each of these 
markers to find boundaries between grains. Ordinar-
ily, this would erroneously over-segment the plate-
lets; however, the prior semantic segmentation in 
the HADMA prevents this. By restraining the Water-
shed to only include globular alpha phase grains, a 

Figure  5   a Bimodal microstructure image from SEM and b 
cropped image highlighting with orange arrows the inner bounda-
ries between touching globular grains.

Figure 6   Phase classification with the use of semantic segmen-
tation of the micrograph from 4a. The yellow, green and blue col-
ours depict the alpha grains, lath colonies and grain boundaries, 
respectively.

Figure 7   Oversized boundaries which cut area from alpha phase.

Figure 8   a Distance transform of the micrograph and b markers 
of each grain from semantic segmentation.
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detailed and accurate segmentation identifying each 
grain is produced, as shown in Fig. 9.

Neural network training and evaluation

Network selection–training

The novel BCSS training and deployment strategy 
in the proposed algorithm requires the use of a deep 
CNN that must be trained to recognise phases and 
boundaries of whichever material this is to be applied 
to existing network structures can be used in unison 
with our innovation. In this section, we describe how 
the network was chosen and trained for the experi-
ment presented in this study.

In this study, ResNet-50 network was used for 
semantic segmentation, Fig. 10. This decision was 
based on the previous comparative studies and the 
fact that ResNet 50 is a popular neural network used 

for semantic segmentation [19] and object classifica-
tion tasks [26]. We strongly believe that a wide range 
of neural networks can be employed for semantic seg-
mentation. Moreover, a key contribution of our work 
is to introduce the third “boundary” class and enhance 
grain boundary detection. We believe that other neu-
ral networks can benefit from this approach due to 
additional separation created between overlapping 
instances of the same class. As there is no compre-
hensive research defining the optical neural network 
architecture for semantic on metallurgical images, we 
utilised the knowledge other disciplines, such as biol-
ogy, to select the network. For instance, according to 
[35], U-Net–ResNet surpasses the Jaccard index and 
Dice coefficient of U-Net. Additionally, ResNet effi-
ciently utilises GPU resources, and skip connections 
allow it to effectively capture context and improve its 
accuracy in image classification and semantic segmen-
tation tasks [35]. ResNet-50 uses shortcut connections 
to address the issues of low accuracy and vanishing 
gradients [30]. This allows the network to decrease the 
training error and converge faster compared to other 
networks [30, 35] and has shown incredible capabil-
ity in other domains [15, 19, 35, 36]. The network’s 
final layer (classification layer) is fully connected layer 
modified to have three channels, to match the three 
classes we wish to segment.

Training such a CNN to perform semantic segmen-
tation requires training images and corresponding 
per-pixel labels (ground-truth image). In this work, 
SEM images of Ti6Al4V from a public dataset [20] 
were used with ground-truth data created manu-
ally for this study. Training deep networks from 
scratch often requires a vast amount of data that can 
be impractical to obtain for many materials analysis 
problems. To resolve this, we use a technique called 
transfer learning [34] to initialise the network with Figure  9   Final grain segmentation with proposed method 

HADMA.

Figure 10   a Shortcut connections in the ResNet-50 and b architecture of the ResNet-50.
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weights learnt from prior training in other applica-
tions. This can improve segmentation results with lim-
ited datasets and significantly reduces training time. A 
pre-trained ResNet-50 (ImageNet) network was used, 
with weights trained on 1,000,000 images recognis-
ing 1000 different objects [37]. While the pre-trained 
weights are unlikely to contribute to the training, the 
early layers, which often recognise the contrast and the 
edges, are often transferrable, reducing the amount of 
training required by up to 50% [38].

Our research was based on a published dataset by 
Baskaran et al. [20], which consisted of 1000 images 
displaying different microstructures of Ti6Al4V. For 
the purposes of our work, we focused on the bimodal 
micrographs, of which there were 329 in the original 
dataset, each with a size of 600 × 600 pixels. This data-
set contains images of different microstructural mor-
phologies, not all are suitable for measuring globular 
grains or volume fraction. For the purposes of this 
study, we selected 172 suitable microstructures which 
are manually analysed by a materials scientist to pro-
duce a ground-truth segmentation. For our training 
and validation, we selected 122 images, while we 
reserved 50 for testing. As our network has an input 
layer of 224 × 224, which is smaller than the original 
images, we must either crop or resize images for train-
ing. Cropping was selected so as to avoid the loss of 
fine spatial features. During the cropping process, we 
randomly selected regions of the original images to 
crop, allowing partial overlap between crops to pre-
vent the loss of information that lay on the boundaries 
between crops. Based on our tests, which are shown 
in Table 1, we found that cropping the original images 
50 times resulted in the highest class accuracy score 
for the alpha grains while also maintaining a reason-
able training time. The resulting test–validation set 
contains 6100 images. To augment the dataset, we 
included original images from various magnifica-
tion levels and rotated the cropped images by -10–10 
degrees, promoting scale and rotation in variance in 
the trained network.

The network was trained using the solving method 
known as stochastic gradient descent with momentum 
(SGDM) with cross-entropy loss function [39]. The sto-
chastic gradient with momentum is given by Eq. (1):

where ℓ is the iteration number, α > 0 is the learning 
rate, θ is the parameter vector and E(θ) is the loss 
function. In the standard gradient descent algorithm, 
the gradient of the loss function, ∇E(θ), is evaluated 
using the entire training set, and the standard gradient 
descent algorithm uses the entire dataset at once. The 
parameter γ (momentum) determines the contribution 
of the previous gradient step to the current iteration. 
Two major problems for the training are overfitting 
and underfitting. Underfitting occurs when the neural 
network cannot capture the characteristics of training 
sets and cannot fit the target mappings well, leading 
to low accuracy rates and high loss values for all three 
datasets [40]. While underfitting happens when the 
NNs are overly dependent on training sets and learn 
wrong mappings which work well in training sets but 
perform poorly in validation or test sets [40]. Adding 
the regularisation term for the weights to the loss func-
tion E(θ) is one way to reduce overfitting [41].

The loss function with the regularisation term takes 
the form (2):

where w is the weight vector, and λ is the regularisa-
tion factor (coefficient), and the regularisation function 
Z(w) is (3):

There are a variety of hyperparameters that affect 
the training performance using this method. These 
include the proportion between the data used for 
training and validation, the number of epochs, the 
importance of each class, the momentum and regu-
larisation. All of these are explained in Li Yang et al. 
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Table 1   Parameters that 
we used for the trail–error 
approach (We run all the 
possible combination for 
hyperparameters)

Learning rate [10−4–10−1] Logarithmically increase by 1 unit
Number of epochs [20–50] Integer increase by 5 units
Momentum [0.9–0.99] Decimal increase by 0.01 unit
Regularisation [10–4–10−1] Logarithmically increase by 1 unit
“Alpha” class weight factor [1–10] Integer increase by 1 unit
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[28], with more details on hyperparameter tuning pro-
vided in to achieve better segmentation results. The 
method we followed in tuning the hyperparameters 
of the neural network was based on a trial-and-error 
approach. We fine-tuned the network based on the 
momentum, learning rate, regularisation, number of 
epochs and validation patience. For instance, the way 
the learning rate affects the training is that when it has 
a large value, the training can finish much faster, but 
at the same time, the gradient fluctuates around the 
different values or even cannot converge. On the other 
hand, a small learning rate will increase the training 
time but will converge better. So, an ideal learning rate 
will activate the loss function to converge at a global 
minimum for an affordable training time. Moreover, 
an extensive analysis of the trade-offs between the 
learning rate and the convergence can be found at the 
study of Gupta et al. [42].

Another way to improve the training of a neural 
network is the manual calibration of the class weights. 
The manual calibration of weights allows the user to 
specify each class’s relative importance and helps 
improve the overall performance of the final segmen-
tation analysis. Using different weights for different 
classes in phase classification can help to address 
the class imbalance, where some classes have more 
samples than others. In our study, we aimed to cali-
brate the alpha phase weights to improve the seman-
tic segmentation results as it is most critical class for 
the intended final measurement. For our intended 
purpose of measuring alpha grain size and volume 
fraction misclassification between beta phase and 
alpha grain boundaries, it will have minimal impact 
on the final measurement, while misclassifications of 
the alpha class would be more significant. In order to 
determine the optimal model for the semantic segmen-
tation analysis, we compared the experimental results 
with the ground-truth dataset, assessing the accuracy 
of each class using the true-positive rate score met-
ric. We tested weight factors ranging from 1 to 10 and 
weights of 50, 100, 200 and 400 to observe their impact 
on class accuracy, Table 2. As predicted, increasing the 
importance of one class resulted in a notable improve-
ment in that class’s accuracy, while the accuracy of 
the other two classes decreased. Our experiments con-
cluded at a weight of 400, where the beta class had a 
true-positive rate of 0.0001, and the alpha class had a 
true-positive rate of 0.9987, Fig. 10. After testing, we 
concluded that the best model is the one with alpha 
weights multiplied by 5. This weight returned a high 

level of accuracy in the alpha class, while also main-
taining strong accuracy in both the boundary and lath 
classes. When using weights of 5, the true-positive rate 
of the boundary class is 0.4223. However, this accu-
racy is affected by the fact that the boundaries of the 
ground-truth images are only 3 pixels wide. Hence, 
even a small change in the position of the boundary 
or its size in the predicted images can significantly 
impact their accuracy. Despite the low boundary 
accuracy, the predicted boundaries provide enough 
information for the Watershed to enhance or complete 
the grain boundaries. On the other hand, using unbal-
anced weights resulted in the highest boundary and 
lath class accuracy, but at the expense of alpha class 
accuracy, which was the most important for our exper-
iment. Therefore, we decided to exclude unbalanced 
weights from our experiments. While the best alpha 
class accuracy was achieved with weights of 10, this 
weight resulted in the lowest accuracy in the other two 
classes. As a result, we had to limit our options and 
choose the most balanced weight distribution for our 
experiment. In order to determine the optimal model 
for the semantic segmentation analysis, we compared 
the experimental results with the ground-truth data-
set. The true-positive rate score is given by the fol-
lowing equation: true-positive rate = TP/((TP + FN)), 
TP is the number of true-positives pixels, and FN is 
the number of false-negative pixels.

Table 2   The accuracy metrics of the class with the correspond-
ing weights

Alpha class 
weights

Alpha class 
accuracy

Boundary class 
accuracy

Lath class 
accuracy

1 0.8592 0.4642 0.8893
2 0.866 0.4157 0.8876
3 0.8848 0.4394 0.8587
4 0.8854 0.4279 0.8692
5 0.912 0.4144 0.8416
6 0.8875 0.4286 0.8558
7 0.9079 0.4098 0.8455
8 0.8998 0.3908 0.8476
9 0.9172 0.3873 0.8398
10 0.9182 0.3954 0.8269
50 0.9688 0.2394 0.7181
100 0.9869 0.1199 0.6399
200 0.9969 0.0281 0.4779
300 0.9972 0.0074 0.4525
400 0.9987 0.0001 0.4268
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The values of the parameters for our experiments 
are given below. We set the initial learning rate for the 
model to 0.001, learning rate drop fact was set to 0.3 
every 10 epochs, the validation patience was set to 20, 
the number of epochs was set to 25, the momentum 
to 0.99 and the regularisation to 0.001. All the values 
that we used for the hyperparameters in our experi-
ments are shown in Table 1. While these settings gave 
optimal results in our trial, it is expected that other 
networks and training regimes will perform similarly 
well.

Data analysis and subjectivity

Manual labelling of training data in deep learning is 
often a trivial task. For instance, in applications, of 
self-driving cars, there is rarely ambiguity over what 
is and is not a car. However, microstructures are often 
far more subjective. Consider the example in Fig. 11 
which shows manual labels produced by different sci-
entists, both with similar training. There is an observ-
able difference in the level of segmentation with no 
certainty of which is correct. The arrows show an 
example of subjectivity in the labelling process, while 
in the red squared area, some grains are missing from 
the second analysis. This can be an issue as the neural 
network may learn this subjective opinion during the 
training, which consequently may affect our ability to 
quantify accuracy.

Differences between manual and automatic digital 
segmentations can be measured with BF score (bound-
ary F1-measure) [41], shown in Eq. (4).

where TP = true-positive prediction, FP = false-positive 
prediction and FN = false negative. A true-positive 
prediction is when a specific pixel of the predicted 
image belongs to the segmented grain of the ground-
truth image.

BF score is a relation between precision [41] and 
recall [41], which are accuracy metrics of detection or 
segmentation. We measure BF score by overlapping 
the segmented image over the ground-truth image 
and identify the matching area of the grains in the two 
images measuring this way the accuracy of the grain 
segmentation.

Precision and recall give as information about how 
many grains have been segmented correctly com-
pared to the predicted grains and the total true grains, 
respectively.

Results

The novel HADMA approach is validated using the 
public dataset recently published by [20]. We selected 
172 images from this dataset that shown bi-modal 

(4)F1 =
2TP

2TP + FN + FP

,

Figure 11   Subjectivity in manual ground-truth labelling where ground-truth images are produced by different scientists.
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microstructures with delineable grains. A total of 122 
are used for training and 50 for validation. Also, in 
our ground-truth data, every grain is measured to 
ensure accurate results; however, the inter-operator 
variability of 16% within ASTM standard is based on 
statistics and recommends counting at least 10 grains 
per linear intercept on a random section or at least 100 
grains per field of view when using the planimetric. 
Thus, while we know that our results are accurate, this 
variability between users is higher as any uncertain 
grain boundaries and regions become more statisti-
cally significant. An example of images of this dataset 
is shown in Fig. 12a and d.

The processing methods used by the BCSS results 
in single segmentation and can be used to create vis-
ualisation of the microstructural analysis, as shown 
in Fig. 12b and e. While the greatest benefit of this 
approach is the quantitative measurement, this 
enables·that these visualisations are also helpful for 
further visual inspection of the microstructure like 
the complete detection of the grains. Those methods 

can also increase the confidence in the quantitative 
measures by demonstrating how each measurement 
is derived. Two key microstructural features were 
measured in our experiments: mean grain size and 
the volume fraction of the primary alpha phase. 
These measurements were compared to ground-
truth measurements produced by expert materials 
scientists, following the ASTM E112 [2] and E562 [3] 
standards. A key consideration during this study is 
that no method is expected to achieve 100% accuracy 
as the ground-truth is uncertain. Therefore, any dif-
ference between measurements using the HADMA 
and manual results from the user less than 16% is 
within the expected variation [2], and either result 
may be correct. Any result with a difference exceed-
ing the 16% must be considered as erroneous from 
the automated method. This approach has also been 
used in previously published methods [7, 43]. A 
similar threshold of 10% is set for comparison of the 
volume fraction, as per E562 standards [3].

Figure 12   Examples of images from the validation dataset and visualisation of results where a and d original SEM images, b and e 
phase separation after semantic segmentation while c and f a segmentation of each grain measured by the algorithm.
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We also compare the produced results from the 
HADMA and a recently published method [7] for 
Ti6Al4V bimodal microstructure. A short study using 
an additional data is also included to evaluate the gen-
eralisability of the proposed technique.

Grain size and globular volume fraction 
measurements

The difference between the mean grain sizes measured 
by the HADMA and from existing standards, for each 
microstructure in the test dataset, is plotted in Fig. 13.

Results from the HADMA typically fall comfortably 
below the 16% threshold of the inter-operator repeat-
ability, meeting the standard of accuracy set in the 
E112 standards. There are only two micrographs (14 
and 16) that the deviation between the HADMA versus 
the scientist exceeded the acceptable threshold. The 
smaller grains that the HADMA detects reducing the 
measurement of the average grain size compared to 
the scientist. It is clear that the predicted image cap-
tured more details. This is an outcome of the subjectiv-
ity that explained on “Neural Network Training and 
Evaluation” Section. Also, in the training set, there are 
images which show fewer coarse grains altering the 
number of the grains per image.

For ASTM E112, a minimum of 40–50 grains is 
required but 500 is recommended [2]. Our dataset 
allows the minimum conditions to be met but not 

always the recommended. Thus, the fact that the 
algorithm still performs well is more impressive. For 
instance, Fig. 12a and d illustrates the aforementioned 
differences.

To measure the average grain size of the tested 
images, we used the below function:

where the AGV = average grain size, L = major axis 
length which is the longest straight line that fits inside 
the grains, l = minor axis length which is the maxi-
mum length inside the grain that is perpendicular to 
the major axis length and n = number of the detected 
grains. Both minor and major axes are crossing the 
centre of the grains as both have normalised second 
central moments as the grain.

The units we used to measure distance are pixel 
units.

Similar results were achieved for the globular vol-
ume fraction when we compared it to the ground-
truth image, as shown in Fig. 14. To compute the VF 
(volume fraction), we used the follow equation:

where VF is the volume fraction of the grains, 
TPG = total number of pixels that belong to the alpha 

(6)AGV =

∑

n

i=1
(L(i) + l(i))

2 × n

,

(7)VF =
TPG

TP

,

Figure 13   Chart of % deviation of ground-truth and HADMA for the tested micrographs.
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class and TP = total image pixels. Only four of the 
images that we used for testing lie above the ASTM 
threshold of 10%. With the worst-case result reaching 
only 2.8% above the expected threshold, the reason for 
these differences is due to subjectivity and the ability 
to perceive finer grains. In the manual labelling pro-
cess, if a few pixels were included or excluded when 
the ground-truth image was produced could alter the 
less than 3% deviation. For instance, the differences 
in the perimeter size of the grains have been identi-
fied from the scientist versus the algorithm. This is 
reflected at the accuracy metrics as shown in Table 3, 
where recall is higher than BF score, this means that 
model’s true-positive rate and false-negative rate are 
higher and lower, respectively, compared to its pre-
cision (which measures the proportion of predicted 
positive cases that are actually positive) and false-pos-
itive rate (which measures the proportion of predicted 
negative cases that are actually positive).

Comparison with existing method

Furthermore, the HADMA is compared with the 
method [7] as is illustrated in Fig. 16. The suggested 
hybrid analysis HADMA improved the method [7] 
significantly. Firstly, the existing method required 
some manual parameterisation, which limits its 
robustness to variations in the dataset. These opti-
mal parameters were selected empirically using 
the first image in the dataset (as suggested in prior 
work [7]), but the larger and more diverse dataset 
meant that the results used remained inconsistent 
compared to the hybrid approach. So, compared to 
the HADMA, the previously developed method has 
a more limited ability to interpret the challenging 
morphology of bimodal microstructure of Ti6Al4V. 
This leads to large errors in certain images, like in 
Fig.  16e, some areas were considered as a single 
grain instead of four. While there are areas where 
the lath colonies were erroneously measured as pri-
mary alpha phase, Fig. 16b. The benefit of HADMA 
is that it requires no previous parameterisation and 
had a good ability to distinguish phases. Moreover, 
the algorithm managed to classify accurately areas 
that were considered as laths, Fig. 15c. Other than 
these evident differences it also appeared that the 
use of deep learning to perform an initial estimation 
of grain boundaries typically led to more accurate 
separation of the grains. This is illustrated in Fig. 16f, 

Figure 14   Chart of volume fraction % deviation of the ground-truth and HADMA for the tested micrographs.

Table 3   Accuracy metrics between HADMA and ground-truth

Original image BF score (%) Precision (%) Recall (%)

Micrograph 13 82.43 76.89 88.83
Micrograph 16 81.05 74.71 88.57
Micrograph 17 76.96 72.06 82.58
Micrograph 21 82.49 77.47 88.21
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which illustrates an example where touching alpha 
grains were separated significantly better adopting 
the new approach. This arises as previous approach 
[7] requires some section of the grain border to be 
delineable, while the HADMA was able to interpret 
this utilising the entire morphology of the grains pre-
dicting parts of the grains that are not well defined in 
the image. The differences between the two methods 
are reflected in Table 4 which shows the mean grain 
size comparison for the ground-truth, HADMA and 
the Watershed approach [7].

Table 5 shows the deviation of the volume fraction 
for the two methods and the ground-truth image. 
Again, the same micrographs have been used.

Both tables show that the HADMA has similar 
results with the ground-truth images compared to 
the method [7]. The maximum deviation for the mean 
grain size is 12.51% for HADMA and 25% for the 
existed method [7]. While the maximum deviation 
for the volume fraction for HADMA and method [7] 
is 8.73% and 44.86%, respectively. Table 6 shows the 
mean, standard deviation and min and max error for 
the “bimodal” test set.

Figure  15   Differences between ground-truth and predicted 
image from BCSS. The yellow arrows show the finer grains that 
are detected in the predicted image and the rectangles the missing 
grains in the ground-truth image.

Figure 16   a, d the original images, b, e the Watershed [7] and c, 
f HADMA.

Table 4   Mean grain size and equiaxed alpha volume fraction 
comparison of the aforementioned techniques

Original image Ground-
truth (µm)

HADMA (µm) Watershed-based 
method [7] (µm)

Micrograph 01 9.37 9.05 7.32
Micrograph 03 9.91 8.67 7.42
Micrograph 31 4.89 5.43 5.99

Table 5   Primary alpha phase volume fraction

Original image Ground-
truth (%)

HDMA (%) Watershed-
based method 
[7] (%)

Micrograph 01 58.78 57.02 71.9
Micrograph 03 44.39 48.64 70.87
Micrograph 31 43.78 43.54 79.41

Table 6   Error illustration of the mean, std and min and max for 
the “bimodal” test set

Mean error Std error Min error Max error

Grain size 0.208 µm 0.423 µm 0.012 µm 2.027 µm
Volume fraction 0.0124% 0.004% 0.00042% 0.0543%
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Applicability to different microstructural 
morphologies of Ti6Al4V

It has been demonstrated that the HADMA approach 
is successful for datasets similar to those for which the 
method was developed. However, the microstructure 
of materials and the resulting micrographs are known 
to exhibit significant variations [15, 44], particularly 
in the case of Ti6Al4V. This has been previously cited 
as a key reason for deep learning methods of image 
identification being less efficiently applied in materials 
science, as compared to fields such as medicine [13].

To validate the approach on other microstructures 
of Ti6Al4V, we acquired microstructural images 
of two other microstructural types. The types of 
microstructures we used consisted of elongated and 
equiaxed alpha grains, illustrated in Fig. 17a and 
b, respectively. Due to morphological differences 
between the Ti6Al4V microstructures, the first model 
(M1) that we trained on the bimodal dataset did not 
perform well when tested it on the new starkly dif-
ferent data. To resolve this issue, we trained two 
different models, one for each of the new datasets, 

to analyse microstructures with elongated and equi-
axed grains (M1, M2 and M3 refer to the trained 
models on the “bimodal”, “elongated” and equiaxed 
datasets, respectively). For each microstructure, an 
area was imaged containing approximately 2583 
elongated and 2000 equiaxed alpha grains.

However, for the “elongated” dataset, this was 
achieved by capturing 43 images with approximately 
63 grains per images, whereas with the “equiaxed”, 
this was achieved using only two images, but with 
1000 grains per image. The original size of the images 
for both datasets is 2048 × 1887 pixels, which resulted 
in a significant resolution difference in terms of the 
number of pixels per grain. For the data population, 
we cropped the images following the same approach 
as described in 4.1. For the “elongated” dataset, we 
reserved two images for testing while the remain-
ing 41 were cropped randomly 100 times creating a 
training–validation set of 4100 images. Whereas for 
the “equiaxed” dataset, we reserved one image for 
testing and one image for training. Thus, we selected 
to randomly crop a single-image 400 times. For both 
datasets, we tested a various number of cropping 

Figure  17   a Original image of Ti6Al4V taken from SEM, 
b boundary class semantic segmentation. The top row of the 
images belongs in the elongated dataset and the bottom row to 

the equiaxed dataset. The three columns of the figure from left to 
right depict the original images, the BCSS and HADMA.
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where are found in Tables 7 and 8. We chose those 
numbers as they presented a slightly better accuracy 
score for all classes.

For the training purposes, we split the aforemen-
tioned training and validation data 95% for training 
and 5% for validation. The hyperparameters that we 
selected to train M2 and M3 were refined using the 
empirical approach described in 4.1. We chose to bal-
ance the weights like in the first model (M1) to make 
alpha class 2 times more important than the other 
two classes (boundaries and beta class). The training 
options are based on Table 1. For both M2 and M3, 
the optimal hyperparameters were found to be the 
initial learning rate for the model to 0.001, the valida-
tion patience to 20, the number of epochs to 25, the 
momentum to 0.99 and the regularisation to 0. 001.

The numbers in the below tables for the elongated 
grains refer to the average values for the two test 
images. While the numbers for the equiaxed grains 
refer to the one available image.

Table 9 shows, the mean grain size results, which 
are similar between the HADMA, the previously 
developed method and the ground-truth image. The 
deviation between the results for the volume fraction 
of the primary alpha phase is shown in Table 10 and 
lie below than 10%, which follows the international 
standards [3].

The results have less than 1% deviation in all met-
rics for models M2 and M3 (Tables 11 and 12) which 
justify our choice for training two different neural 
networks for the new datasets. Also, this is a proof of 
how the topography of the microstructure affects the 
segmentation especially for those microstructures that 
are evaluated as “easy”. Where phases create similar 
morphological objects, conventional algorithms work 
similarly well like the approach of deep learning. But, 
as it was mentioned before, what is the time–cost to 
develop or parameterise such algorithms? While with 
the HADMA adaptability, we showed that sometimes 

even with one image and suitable processing, Fig. 17b 
shows enough to train a deep neural network for 
phase segmentation and get totally acceptable results.

Conclusion

A novel approach of hybrid automated digital micro-
structural analysis, HADMA, has been developed 
which combines deep learning-based networks for 
semantic segmentation networks with deterministic 
segmentation methods based on the Watershed Trans-
form. This method incorporates a new strategy for 
deploying semantic segmentation networks by train-
ing the network to identify boundary class, which pro-
vides additional information to guide grain segmenta-
tion and give consistently reliable results.

Table 7   Comparison of classes’ accuracy score versus number 
of crops for the elongated grains

Number of crops Alpha class 
accuracy

Boundary 
class accuracy

Beta class 
accuracy

Equally cropped (72) 0.9785 0.2371 0.733
100 0.9347 0.0875 0.0081
200 0.9874 0.0244 0.0033
300 0.9688 0.123 0.7122

Table 8   Comparison of classes’ accuracy score versus number 
of crops for the equiaxed grains

Number of crops Alpha class 
accuracy

Boundary 
class accuracy

Beta class 
accuracy

Equally cropped (63) 0.9785 0.2371 0.733
100 0.9347 0.0875 0.0081
200 0.9874 0.0244 0.0033
300 0.9688 0.123 0.7122
400 0.9526 0.4072 0.9164
500 0.9619 0.3949 0.4996
600 1 0.0001 0.0002

Table 9   Mean grain size, comparison between the HADMA, 
existing method and materials experts

Original image Ground-
truth (µm)

HADMA (µm) Watershed-based 
method [7] (µm)

Elongated alpha 7.47 7.2 7.38
Equiaxed alpha 4.086 4.34 4.55

Table 10   Primary alpha phase volume fraction

Original image Ground-
truth (%)

HADMA (%) Watershed-
based method 
[7] (%)

Elongated alpha 25.51 27.8 25.6
Equiaxed alpha 86.91 84.87 87.61
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The approach is validated by multiple experimental 
trials to assess both measurement accuracy and the 
ease of adapting the technique to new datasets.

Firstly, a study with a relatively large dataset of 
172 micrographs is presented with HADMA used 
to measure grain size and globular volume frac-
tion. Results matched ground-truth measurements 
from published standards in 93.88% of samples for 
the mean grain size analysis and 91.2% for the vol-
ume fraction of the Ti6Al4V bimodal microstruc-
ture. Where this standard was not met, the devia-
tion in measurement is small and is explainable by 
the subjectivity in these micrographs. Furthermore, 
our method produces useful visualisations of the 
segmentation that correlates with measurements to 
increase confidence and confirm that all results are 
realistic of what an expert materials scientist may 
measure.

Secondly, an additional study was performed 
with smaller and more varied datasets. Training 
and test data are considerably limited in this trial, 
so while this later trial is not optimal for assessing 
the ultimate performance of the HADMA, it is very 
useful for assessing how well the method adapts to 
other datasets and microstructural problems. While 
some re-training of the network was required, it is 
demonstrated that re-training on small dataset can 
allow the HADMA to be adapted to accurately meas-
ure different microstructures. This adaptability is 

demonstrated by good results achieved on both equi-
axed and elongated microstructures. Compared to an 
existing method to automate analysis of such micro-
structures [7], which requires manual parameterisa-
tion, it was found that the HADMA adapted equally 
well without the need for this additional step.

Based on this later study, we believe that HADMA 
can be used with other Ti or non-Ti alloys. However, 
our findings suggest a few factors that should be con-
sidered when attempting this.

The new material must be allotropic and present 
microstructural similarities in terms of shape, texture 
and colour. Despite this requirement, the proposed 
hybrid pipeline of HADMA can be generalised, as it 
is possible to train a new neural network for a com-
pletely new material and still achieve accurate seg-
mentation results by following the proposed hybrid 
analysis approach. There are several other factors 
that could influence the microstructural analysis of 
new materials, such as the material type (metal or 
non-metal), number of phases, balanced or unbal-
anced classes in the dataset, types of microscopes 
used (LOM, SEM, etc.), image capturing (external 
or integrated camera in the microscope, etc.) and 
lighting conditions. Therefore, we suggest defining 
the number of phases in the new material to deter-
mine the number of classes and experimenting with 
a variety of weights for balancing the phases in the 
dataset. Hence, a transfer learning approach also it is 
advised especially from the pre-trained weights of a 
model that was trained on a similar dataset. Addition-
ally, to improve the approach’s applicability to other 
materials, we recommend exploring the potential of 
a cyclical learning rate [45]. Method [45] eliminates 
the need for manual experimentation to determine 
the best global learning rates and schedules. Rather 
than continuously decreasing the learning rate, this 
approach allows for a cyclic variation between optimal 
values. By utilising cyclical learning rates instead of 
static values, classification accuracy is improved and 
often in fewer training iterations, eliminating the need 
for constant tuning.

Table 11   The results for BF 
score, precision and recall for 
the images in Figs. 17a and b 
with the HADMA approach

Original image BF score (%) Precision (%) Recall (%)

Elongated alpha/HADMA(M2) 98.13 98.66 97.6
Elongated alpha/method [7] 97.28 97.53 97.02
Equiaxed alpha/HADMA(M3) 97.74 97.1 98.39
Equiaxed alpha/method [7] 97.47 97.07 97.88

Table 12   The results for BF score, precision and recall for 
the images in Figs.  17a  and b compared to the trained models, 
M1 versus M2 and M1 versus M3 for elongated and equiaxed, 
respectively

Elongated Equiaxed

HADMA 
(M1) (%)

HADMA 
(M2) (%)

HADMA 
(M1) (%)

HADMA 
(M3) (%)

BF score 70.03 98.13 72.69 97.74
Precision 95.88 98.66 92.64 97.1
Recall 55.15 97.6 59.82 98.39
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The foremost advantages of HADMA are the 
adaptability and the minimisation of manual effort 
needed, fast measurement times and the repeatabil-
ity of measurements inherent in automated digital 
analysis approaches. The HADMA can typically be 
redeployed between different microstructural data-
sets using a parameterisation free approach, requir-
ing no input beyond loading the proper image to 
obtain the same output every time. Also, ASTM grain 
standards such as E112 [2] need roughly 15 min per 
picture of 60–70 grains, as reported in [7] and vali-
dated when obtaining ground-truth data for the 
current investigation. In comparison, our approach 
needed a mean processing time of 0.41 s per picture 
for images in this investigation. This measurement 
is based on the average time of the two machines; 
the first with an i7 8700 k, 16 GB RAM with a 1080Ti 
GPU and the second with a Ryzen7 5800 × 8 CORE, 
16 GB RAM with RTX 3070 GPU. This is a level of 
technology that is accessible for the most modern 
laboratories. Furthermore, process time consistent 
primarily of the time required to segment the grains; 
therefore, each additional measurement computed 
from the result is negligible. This is not typically true 
for existing manually driving analysis approaches. 
Alongside the absence of the need to interact with 
the measurement system, this makes the HADMA 
substantially more scalable than many existing 
approaches. Furthermore, this also gives a baseline 
from which to further enhance these approaches.
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