608 research outputs found

    Two-parameter deformation of the Poincar\'e algebra

    Full text link
    We examine a two-parameter (,\hbar , λ\lambda ) deformation of the Poincar\`e algebra which is covariant under the action of SLq(2,C).SL_q(2,C). When λ0\lambda \rightarrow 0 it yields the Poincar\`e algebra, while in the 0\hbar\rightarrow 0 limit we recover the classical quadratic algebra discussed previously in \cite{ssy95}, \cite{sy95}. The analogues of the Pauli-Lubanski vector ww and Casimirs p2p^2 and w2w^2 are found and a set of mutually commuting operators is constructed.Comment: 10 pages, Latex2

    Towards constructing one-particle representations of the deformed Poincar\'e algebra

    Full text link
    We give a method for obtaining states of massive particle representations of the two-parameter deformation of the Poincar\'e algebra proposed in q-alg/9601010, q-alg/9505030 and q-alg/9501026. We discuss four procedures to generate eigenstates of a complete set of commuting operators starting from the rest state. One result of this work is the fact that upon deforming to the quantum Poincar\'e algebra the rest state is split into an infinite number of states. Another result is that the energy spectrum of these states is discrete. Some curious residual degeneracy remains: there are states constructed by applying different operators to the rest state which nevertheless are indistinguishable by eigenvalues of all the observables in the algebra.Comment: 23 pages. New interpretation of the results is given: upon the deformation the rest state of Poincar\'e algebra is split into an infinite number of states with discrete energy spectrum. Title, abstract and conclusion are change

    Deformation Quantization of the Isotropic Rotator

    Full text link
    We perform a deformation quantization of the classical isotropic rigid rotator. The resulting quantum system is not invariant under the usual SU(2)×SU(2)SU(2)\times SU(2) chiral symmetry, but instead SUq1(2)×SUq(2)SU_{q^{-1}}(2) \times SU_q(2).Comment: 12pp, LATE

    Lorentz Transformations as Lie-Poisson Symmetries

    Full text link
    We write down the Poisson structure for a relativistic particle where the Lorentz group does not act canonically, but instead as a Poisson-Lie group. In so doing we obtain the classical limit of a particle moving on a noncommutative space possessing SLq(2,C)SL_q(2,C) invariance. We show that if the standard mass shell constraint is chosen for the Hamiltonian function, then the particle interacts with the space-time. We solve for the trajectory and find that it originates and terminates at singularities.Comment: 18 page

    Lie-Poisson Deformation of the Poincar\'e Algebra

    Full text link
    We find a one parameter family of quadratic Poisson structures on R4×SL(2,C){\bf R}^4\times SL(2,C) which satisfies the property {\it a)} that it is preserved under the Lie-Poisson action of the Lorentz group, as well as {\it b)} that it reduces to the standard Poincar\'e algebra for a particular limiting value of the parameter. (The Lie-Poisson transformations reduce to canonical ones in that limit, which we therefore refer to as the `canonical limit'.) Like with the Poincar\'e algebra, our deformed Poincar\'e algebra has two Casimir functions which we associate with `mass' and `spin'. We parametrize the symplectic leaves of R4×SL(2,C){\bf R}^4\times SL(2,C) with space-time coordinates, momenta and spin, thereby obtaining realizations of the deformed algebra for the cases of a spinless and a spinning particle. The formalism can be applied for finding a one parameter family of canonically inequivalent descriptions of the photon.Comment: Latex file, 26 page

    A Model of Blood Pressure, Heart Rate, and Vaso-Vagal Responses Produced by Vestibulo-Sympathetic Activation

    Get PDF
    Blood Pressure (BP), comprised of recurrent systoles and diastoles, is controlled by central mechanisms to maintain blood flow. Periodic behavior of BP was modeled to study how peak amplitudes and frequencies of the systoles are modulated by vestibular activation. The model was implemented as a relaxation oscillator, driven by a central signal related to Desired BP. Relaxation oscillations were maintained by a second order system comprising two integrators and a threshold element in the feedback loop. The output signal related to BP was generated as a nonlinear function of the derivative of the first state variable, which is a summation of an input related to Desired BP, feedback from the states, and an input from the vestibular system into one of the feedback loops. This nonlinear function was structured to best simulate the shapes of systoles and diastoles, the relationship between BP and Heart Rate (HR) as well as the amplitude modulations of BP and Pulse Pressure. Increases in threshold in one of the feedback loops produced lower frequencies of HR, but generated large pulse pressures to maintain orthostasis, without generating a VasoVagal Response (VVR). Pulse pressures were considerably smaller in the anesthetized rats than during the simulations, but simulated pulse pressures were lowered by including saturation in the feedback loop. Stochastic changes in threshold maintained the compensatory Baroreflex Sensitivity. Sudden decreases in Desired BP elicited non-compensatory VVRs with smaller pulse pressures, consistent with experimental data. The model suggests that the Vestibular Sympathetic Reflex (VSR) modulates BP and HR of an oscillating system by manipulating parameters of the baroreflex feedback and the signals that maintain the oscillations. It also shows that a VVR is generated when the vestibular input triggers a marked reduction in Desired BP

    Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    Get PDF
    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 M\text{M}_{\odot} and mass ratios between 1/61/6 and 1\,. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.Comment: 9 pages, 4 figures, corrected the name of one author (previously misspelled

    Regression of Environmental Noise in LIGO Data

    Get PDF
    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the gravitational-wave channel from the PEM measurements. One of the most promising regression method is based on the construction of Wiener-Kolmogorov filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the Wiener-Kolmogorov method has been extended, incorporating banks of Wiener filters in the time-frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we presents the first results on regression of the bi-coherent noise in the LIGO data
    corecore