25 research outputs found

    Magnetization Measurement of a Possible High-Temperature Superconducting State in Amorphous Carbon Doped with Sulfur

    Full text link
    Magnetization M(T,H) measurements performed on thoroughly characterized commercial amorphous carbon powder doped with sulfur (AC-S), revealed the occurrence of an inhomogeneous superconductivity (SC) below T_c = 38 K. The constructed magnetic field-temperature (H-T) phase diagram resembles that of type-II superconductors. However, AC-S demonstrates a number of anomalies. In particular, we observed (1) a non-monotonic behavior of the lower critical field H_c1(T); (2) a pronounced positive curvature of the "upper critical field boundary" that we associated with the flux lattice melting line Hm(T); (3) a spontaneous ferromagnetic-like magnetization M0 coexisting with SC. Based on the analysis of experimental results we propose a nonstandard SC state in AC-S.Comment: 18 pages including 5 figure

    Comment on "Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations" (arXiv:0902.1925)

    Get PDF
    In 2004 we have shown that substantial part of conductivity in graphite is provided by holes with massless linear spectrum - Dirac Fermions that coexist with massive normal carriers - electrons. In a recent Letter [Phys. Rev. Lett. 102, 166403 (2009), arXiv:0902.1925] Schneider et al. revised our conclusion pointed that both types of carriers are massive. Since both groups use the same method of phase determination of Shubnikov de Haas oscillation we comment here that the controversy originates from the improper treatment of experimental results in Schneider2009 et al

    Phase analysis of quantum oscillations in graphite

    Get PDF
    The quantum de Haas van Alphen (dHvA) and Shubnikov de Haas (SdH) oscillations measured in graphite were decomposed by pass-band filtering onto contributions from three different groups of carriers. We develop the two-dimensional phase analysis method which allows to identify these carriers as (i) minority holes having two-dimensional (2D) parabolic massive spectrum, (ii) majority electrons, also massive but with intermediate 2D-3D spectrum, and (iii) majority holes with 2D Dirac-like spectrum which seems to be responsible for the unusual strongly-correlated electronic phenomena in graphite.Comment: latest version as was published in PR

    Signatures of Electron Fractionalization in Ultraquantum Bismuth

    Full text link
    Because of the long Fermi wavelength of itinerant electrons, the quantum limit of elemental bismuth (unlike most metals) can be attained with a moderate magnetic field. The quantized orbits of electrons shrink with increasing magnetic field. Beyond the quantum limit, the circumference of these orbits becomes shorter than the Fermi wavelength. We studied transport coefficients of a single crystal of bismuth up to 33 tesla, which is deep in this ultraquantum limit. The Nernst coefficient presents three unexpected maxima that are concomitant with quasi-plateaus in the Hall coefficient. The results suggest that this bulk element may host an exotic quantum fluid reminiscent of the one associated with the fractional quantum Hall effect and raise the issue of electron fractionalization in a three-dimensional metal.Comment: 9 pages, four figures and supposrting online materia

    Dirac and Normal Fermions in Graphite and Graphene: Implications to the Quantum Hall Effect

    Full text link
    Spectral analysis of Shubnikov de Haas (SdH) oscillations of magnetoresistance and of Quantum Hall Effect (QHE) measured in quasi-2D highly oriented pyrolytic graphite (HOPG) [Phys. Rev. Lett. 90, 156402 (2003)] reveals two types of carriers: normal (massive) electrons with Berry phase 0 and Dirac-like (massless) holes with Berry phase pi. We demonstrate that recently reported integer- and semi-integer QHE for bi-layer and single-layer graphenes take place simultaneously in HOPG samples.Comment: 4 page

    Unstable and elusive superconductors

    Full text link
    We briefly review earlier and report original experimental results in the context of metastable or possible superconducting materials. We show that applied electric field induces conducting state in Copper Chloride (CuCl) whose characteristics resemble behavior of sliding charge-density-wave(s) (CDW). We discuss whether the sliding CDW or collective transport of similar ordered charge phase(s) may account for the problem of "high-temperature superconductivity" observed in this and other materials, including Cadmium Sulfide (CdS), metal-ammonia solutions, polymers, amorphous carbon and tungsten oxides. We also discuss a local superconductivity that occurs at the surface of graphite and amorphous carbon under deposition of foreign atoms/molecules.Comment: Invited review article published in a special edition on Superconducting Materials in honor of the 95th birthday year of Ted Geballe, edited by M. B. Maple, J. Hirsch, and F. Marsigli

    Graphite as a bose metal

    Full text link

    Nernst effect and dimensionality in the quantum limit

    Full text link
    Nernst effect, the transverse voltage generated by a longitudinal thermal gradient in presence of magnetic field has recently emerged as a very sensitive, yet poorly understood, probe of electron organization in solids. Here we report on an experiment on graphite, a macroscopic stack of graphene layers, which establishes a fundamental link between dimensionality of an electronic system and its Nernst response. In sharp contrast with single-layer graphene, the Nernst signal sharply peaks whenever a Landau level meets the Fermi level. This points to the degrees of freedom provided by finite interlayer coupling as a source of enhanced thermoelectric response in the vicinity of the quantum limit. Since Landau quantization slices a three-dimensional Fermi surface, each intersection of a Landau level with the Fermi level modifies the Fermi surface topology. According to our results, the most prominent signature of such a topological phase transition emerges in the transverse thermoelectric response.Comment: 13 pages, 4 figures and supplementary information; To appear in Nature Physic
    corecore