87 research outputs found

    Transport in Nanotubes: Effect of Remote Impurity Scattering

    Full text link
    Theory of the remote Coulomb impurity scattering in single--wall carbon nanotubes is developed within one--electron approximation. Boltzmann equation is solved within drift--diffusion model to obtain the tube conductivity. The conductivity depends on the type of the nanotube bandstructure (metal or semiconductor) and on the electron Fermi level. We found exponential dependence of the conductivity on the Fermi energy due to the Coulomb scattering rate has a strong dependence on the momentum transfer. We calculate intra-- and inter--subband scattering rates and present general expressions for the conductivity. Numerical results, as well as obtained analytical expressions, show that the degenerately doped semiconductor tubes may have very high mobility unless the doping level becomes too high and the inter--subband transitions impede the electron transport.Comment: 13 pages, 4 figure

    Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description

    Get PDF
    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3‐D cloud‐tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds\u27 trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II

    Clinical considerations and key issues in the management of patients with Erdheim-Chester Disease: A seven case series

    Get PDF
    Background: Erdheim-Chester Disease (ECD), a non Langerhans' cell histiocytosis of orphan nature and propensity for multi-systemic presentations, comprises an intricate medical challenge in terms of diagnosis, treatment and complication management. Objectives: The objectives are to report the clinical, radiological and pathological characteristics, as well as cardinal therapeutic approaches to ECD patients and to provide clinical analyses of the medical chronicles of these complex patients. Methods: Patients with biopsy proven ECD were audited by a multi-disciplinary team of specialists who formed a coherent timeline of all the substantial clinical events in the evolution of their patients' illness. Results: Seven patients (five men, two women) were recruited to the study. The median age at presentation was 53 years (range: 39 to 62 years). The median follow-up time was 36 months (range: 1 to 72 months). Notable ECD involvement sites included the skeleton (seven), pituitary gland (seven), retroperitoneum (five), central nervous system (four), skin (four), lungs and pleura (four), orbits (three), heart and great vessels (three) and retinae (one). Prominent signs and symptoms were fever (seven), polyuria and polydipsia (six), ataxia and dysarthria (four), bone pain (four), exophthalmos (three), renovascular hypertension (one) and dyspnea (one). The V600E BRAF mutation was verified in three of six patients tested. Interferon-α treatment was beneficial in three of six patients treated. Vemurafenib yielded dramatic neurological improvement in a BRAF mutated patient. Infliximab facilitated pericardial effusion volume reduction. Cladribine improved cerebral blood flow originally compromised by perivenous lesions. Conclusions: ECD is a complex, multi-systemic, clonal entity coalescing both neoplastic and inflammatory elements and strongly dependent on impaired RAS/RAF/MEK/ERK signaling

    Interactions in high-mobility 2D electron and hole systems

    Full text link
    Electron-electron interactions mediated by impurities are studied in several high-mobility two-dimensional (electron and hole) systems where the parameter kBTτ/k_BT\tau /\hbar changes from 0.1 to 10 (τ\tau is the momentum relaxation time). This range corresponds to the \textit{intermediate} and \textit {ballistic} regimes where only a few impurities are involved in electron-electron interactions. The interaction correction to the Drude conductivity is detected in the temperature dependence of the resistance and in the magnetoresistance in parallel and perpendicular magnetic fields. The effects are analysed in terms of the recent theories of electron interactions developed for the ballistic regime. It is shown that the character of the fluctuation potential (short-range or long-range) is an important factor in the manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy

    Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers

    Get PDF
    Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the ‘BAT93’ × ‘Jalo EEP558’ cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed

    Adaptive mechanisms of plants against salt stress and salt shock

    Get PDF
    Salinization process occurs when soil is contaminated with salt, which consequently influences plant growth and development leading to reduction in yield of many food crops. Responding to a higher salt concentration than the normal range can result in plant developing complex physiological traits and activation of stress-related genes and metabolic pathways. Many studies have been carried out by different research groups to understand adaptive mechanism in many plant species towards salinity stress. However, different methods of sodium chloride (NaCl) applications definitely give different responses and adaptive mechanisms towards the increase in salinity. Gradual increase in NaCl application causes the plant to have salt stress or osmotic stress, while single step and high concentration of NaCl may result in salt shock or osmotic shock. Osmotic shock can cause cell plasmolysis and leakage of osmolytes in plant. Also, the gene expression pattern is influenced by the type of methods used in increasing the salinity. Therefore, this chapter discusses the adaptive mechanism in plant responding to both types of salinity increment, which include the morphological changes of plant roots and aerial parts, involvement of signalling molecules in stress perception and regulatory networks and production of osmolyte and osmoprotective proteins
    corecore