20 research outputs found
Faster Shortest Paths in Dense Distance Graphs, with Applications
We show how to combine two techniques for efficiently computing shortest
paths in directed planar graphs. The first is the linear-time shortest-path
algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is
Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm
on the dense distance graph (DDG). A DDG is defined for a decomposition of a
planar graph into regions of at most vertices each, for some parameter
. The vertex set of the DDG is the set of vertices
of that belong to more than one region (boundary vertices). The DDG has
arcs, such that distances in the DDG are equal to the distances in
. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG
(nicknamed FR-Dijkstra) runs in time, and is a
key component in many state-of-the-art planar graph algorithms for shortest
paths, minimum cuts, and maximum flows. By combining these two techniques we
remove the dependency in the running time of the shortest-path
algorithm, making it .
This work is part of a research agenda that aims to develop new techniques
that would lead to faster, possibly linear-time, algorithms for problems such
as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As
immediate applications, we show how to compute maximum flow in directed
weighted planar graphs in time, where is the minimum number
of edges on any path from the source to the sink. We also show how to compute
any part of the DDG that corresponds to a region with vertices and
boundary vertices in time, which is faster than has been
previously known for small values of
Minimum s-t cut in undirected planar graphs when the source and the sink are close
Consider the minimum s-t cut problem in an embedded undirected planar graph. Let p be the minimum number of faces that a curve from s to passes through. If p=1, that is, the vertices s and t are on the boundary of the same face, then the minimum cut can be found in O(n)time. For general planar graphs this cut can be found in O(n log n) time. We unify these results and give an O(n log p) time algorithm. We use cut-cycles to obtain the value of the minimum cut, and study the structure of these cycles to get an efficient algorithm
Single Source - All Sinks Max Flows in Planar Digraphs
Let G = (V,E) be a planar n-vertex digraph. Consider the problem of computing
max st-flow values in G from a fixed source s to all sinks t in V\{s}. We show
how to solve this problem in near-linear O(n log^3 n) time. Previously, no
better solution was known than running a single-source single-sink max flow
algorithm n-1 times, giving a total time bound of O(n^2 log n) with the
algorithm of Borradaile and Klein.
An important implication is that all-pairs max st-flow values in G can be
computed in near-quadratic time. This is close to optimal as the output size is
Theta(n^2). We give a quadratic lower bound on the number of distinct max flow
values and an Omega(n^3) lower bound for the total size of all min cut-sets.
This distinguishes the problem from the undirected case where the number of
distinct max flow values is O(n).
Previous to our result, no algorithm which could solve the all-pairs max flow
values problem faster than the time of Theta(n^2) max-flow computations for
every planar digraph was known.
This result is accompanied with a data structure that reports min cut-sets.
For fixed s and all t, after O(n^{3/2} log^{3/2} n) preprocessing time, it can
report the set of arcs C crossing a min st-cut in time roughly proportional to
the size of C.Comment: 25 pages, 4 figures; extended abstract appeared in FOCS 201
Isomorphism of graph classes related to the circular-ones property
We give a linear-time algorithm that checks for isomorphism between two 0-1
matrices that obey the circular-ones property. This algorithm leads to
linear-time isomorphism algorithms for related graph classes, including Helly
circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and
convex-round graphs.Comment: 25 pages, 9 figure
Recognition of probe proper interval graphs
a b s t r a c t In a partitioned probe graph the vertex set is partitioned into probes and non-probes, such that the set of non-probes is an independent set. A probe proper interval graph is the intersection graph of a set of intervals on the line such that every vertex is mapped to an interval, no interval contains another, and two vertices are adjacent if and only if the corresponding intervals intersect and at least one of them is a probe. We present the first linear-time algorithm that determines whether an input partitioned probe graph is a probe proper interval graph, and if the answer is positive then the algorithm constructs a corresponding set of intervals