20 research outputs found

    Faster Shortest Paths in Dense Distance Graphs, with Applications

    Full text link
    We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph GG into regions of at most rr vertices each, for some parameter r<nr < n. The vertex set of the DDG is the set of Θ(n/r)\Theta(n/\sqrt r) vertices of GG that belong to more than one region (boundary vertices). The DDG has Θ(n)\Theta(n) arcs, such that distances in the DDG are equal to the distances in GG. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG (nicknamed FR-Dijkstra) runs in O(nlog(n)r1/2logr)O(n\log(n) r^{-1/2} \log r) time, and is a key component in many state-of-the-art planar graph algorithms for shortest paths, minimum cuts, and maximum flows. By combining these two techniques we remove the logn\log n dependency in the running time of the shortest-path algorithm, making it O(nr1/2log2r)O(n r^{-1/2} \log^2r). This work is part of a research agenda that aims to develop new techniques that would lead to faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As immediate applications, we show how to compute maximum flow in directed weighted planar graphs in O(nlogp)O(n \log p) time, where pp is the minimum number of edges on any path from the source to the sink. We also show how to compute any part of the DDG that corresponds to a region with rr vertices and kk boundary vertices in O(rlogk)O(r \log k) time, which is faster than has been previously known for small values of kk

    Minimum s-t cut in undirected planar graphs when the source and the sink are close

    Get PDF
    Consider the minimum s-t cut problem in an embedded undirected planar graph. Let p be the minimum number of faces that a curve from s to tt passes through. If p=1, that is, the vertices s and t are on the boundary of the same face, then the minimum cut can be found in O(n)time. For general planar graphs this cut can be found in O(n log n) time. We unify these results and give an O(n log p) time algorithm. We use cut-cycles to obtain the value of the minimum cut, and study the structure of these cycles to get an efficient algorithm

    Single Source - All Sinks Max Flows in Planar Digraphs

    Full text link
    Let G = (V,E) be a planar n-vertex digraph. Consider the problem of computing max st-flow values in G from a fixed source s to all sinks t in V\{s}. We show how to solve this problem in near-linear O(n log^3 n) time. Previously, no better solution was known than running a single-source single-sink max flow algorithm n-1 times, giving a total time bound of O(n^2 log n) with the algorithm of Borradaile and Klein. An important implication is that all-pairs max st-flow values in G can be computed in near-quadratic time. This is close to optimal as the output size is Theta(n^2). We give a quadratic lower bound on the number of distinct max flow values and an Omega(n^3) lower bound for the total size of all min cut-sets. This distinguishes the problem from the undirected case where the number of distinct max flow values is O(n). Previous to our result, no algorithm which could solve the all-pairs max flow values problem faster than the time of Theta(n^2) max-flow computations for every planar digraph was known. This result is accompanied with a data structure that reports min cut-sets. For fixed s and all t, after O(n^{3/2} log^{3/2} n) preprocessing time, it can report the set of arcs C crossing a min st-cut in time roughly proportional to the size of C.Comment: 25 pages, 4 figures; extended abstract appeared in FOCS 201

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure

    Recognition of probe proper interval graphs

    No full text
    a b s t r a c t In a partitioned probe graph the vertex set is partitioned into probes and non-probes, such that the set of non-probes is an independent set. A probe proper interval graph is the intersection graph of a set of intervals on the line such that every vertex is mapped to an interval, no interval contains another, and two vertices are adjacent if and only if the corresponding intervals intersect and at least one of them is a probe. We present the first linear-time algorithm that determines whether an input partitioned probe graph is a probe proper interval graph, and if the answer is positive then the algorithm constructs a corresponding set of intervals
    corecore