377 research outputs found

    Confocal Laser Scanning Microscopic Studies on Alveolar Bone Remodeling with Orthodontic Tooth Movement and Retention

    Get PDF
    Alveolar bone reconstruction in growing dog during the retention period following orthodontic tooth movement was studied. Three beagle dogs (8-10 kg body weight, about one-year-old) were used and two of the animals were subjected to histological observation. The upper 2nd and lower 3rd premolars on both sides were extracted prior to the orthodontic treatments. After a healing period of one month, the upper 3rd premolar and the lower 4th premolar on the right side were moved mesially with a conventional orthodontic force for 8 weeks, and then retained in their new position for 4 weeks. The contralateral corresponding premolars were used as control. The alveolar bone was double-labeled with tetracycline (TC) during the movement and calcein (Cal) during the retention period. Alveolar bone structure and labeling patterns were examined by contact microradiography, conventional fluorescence microscopy, and confocal laser scanning microscopy (CLSM). Optimizing the separation of TC and Cal labelings in the alveolar bone was attained by the simultaneous use of ultraviolet (364 nm) and argon (488 nm) laser sources for excitation of TC and Cal, respectively. Cal labeling, indicative of new bone deposition showed two distinct patterns: lamination at the periodontal surface and rings circumscribing the vascular canal. The cementum surface also exhibited active deposition during the experimental period. Bone formation was affected by slight changes in magnitude and direction of orthodontic or occlusal forces. CLSM is valuable in deciphering the process of alveolar bone remodeling

    Photoelectron angular distribution studies for two spin\u2013orbit-split components of Xe 3d subshell: a critical comparison between theory and experiment

    Get PDF
    The photoelectron angular distribution asymmetry parameters \u3b2 of the Xe 3d subshell were investigated using an x-ray free-electron laser (XFEL) at photon energies of 750 and 800 eV. Owing to the perfect polarization of the XFEL and two-dimensional momentum imaging capability of our velocity map imaging spectrometer, we determined the \u3b2 values with high accuracy. The \u3b2 values were also investigated based on relativistic time-dependent density functional theory calculations of up to 900 eV of photon energies. By comparing all the available experimental results including our data with the most reliable theories on the photon energy dependence of the \u3b2 parameters, serious differences are noted between the experiments and theories. Further studies on resolving this difference will provide new insight into the photoionization processes of the deep inner shells

    Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression

    Get PDF
    Background: The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p> Methodology/Principal Findings: Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p> Conclusion/Significance: IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p&gt
    • …
    corecore