37 research outputs found

    Ability of T1 lipase to degrade amorphous P(3HB): structural and functional study

    Get PDF
    An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well

    Spezifische Bioaktivierung von Implantatoberflächen

    No full text

    A well‐tolerated core needle muscle biopsy process suitable for children and adults

    No full text
    Serial muscle biopsies within clinical trials for Duchenne muscular dystrophy (DMD) are critical to document therapeutic responses. Less invasive means of sampling muscle are needed. We analyzed a retrospective consecutive case-series cohort of vacuum-assisted core needle muscle biopsy procedures performed on healthy and dystrophic individuals at a single institution assessing for safety and reliability of obtaining sufficient high-quality biopsy tissue for histologic assessment in adult and pediatric subjects. Of 471 muscle cores from 128 biopsy procedures, 377-550 mg of total muscle tissue was obtained per procedure with mean core weight of 129 mg (SD, 25.1 mg). All biopsies were adequate for histological assessment. There were no significant adverse events. This core needle biopsy approach, when combined with improved sample processing, provides a safe means to consistently obtain muscle samples for diagnostic and clinical trial applications
    corecore