3,857 research outputs found
Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature
A three-dimensional effective theory for high temperature SU(3) gauge theory,
which maintains the Z(3) center symmetry of the full theory, is constructed.
Such a Z(3) invariant effective theory should be applicable to a wider
temperature range than the usual effective theory, known as EQCD, which fails
to respect the center symmetry. This center-symmetric effective theory can
reproduce domain wall and phase transition properties that are not accessible
in EQCD. After identifying a convenient class of Z(3) invariant effective
theories, we constrain the coefficients of the various terms in the Lagrangian
using leading-order matching to EQCD at high temperature, plus matching of
domain wall properties in the full theory. We sketch the expected structure of
the phase diagram of the effective theory and briefly discuss the prospects of
numerical simulations and the addition of quarks.Comment: 30 pages, 5 figures, v2 with minor correction
From Instantons to Sphalerons: Time-Dependent Periodic Solutions of SU(2)-Higgs Theory
We solve numerically for periodic, spherically symmetric, classical solutions
of SU(2)-Higgs theory in four-dimensional Euclidean space. In the limit of
short periods the solutions approach tiny instanton-anti-instanton
superpositions while, for longer periods, the solutions merge with the static
sphaleron. A previously predicted bifurcation point, where two branches of
periodic solutions meet, appears for Higgs boson masses larger than .Comment: 14 pages, RevTeX with eps figure
Non-perturbative equivalences among large N gauge theories with adjoint and bifundamental matter fields
We prove an equivalence, in the large N limit, between certain U(N) gauge
theories containing adjoint representation matter fields and their orbifold
projections. Lattice regularization is used to provide a non-perturbative
definition of these theories; our proof applies in the strong coupling, large
mass phase of the theories. Equivalence is demonstrated by constructing and
comparing the loop equations for a parent theory and its orbifold projections.
Loop equations for both expectation values of single-trace observables, and for
connected correlators of such observables, are considered; hence the
demonstrated non-perturbative equivalence applies to the large N limits of both
string tensions and particle spectra.Comment: 40 pages, JHEP styl
Domain Walls and Metastable Vacua in Hot Orientifold Field Theories
We consider "Orientifold field theories", namely SU(N) gauge theories with
Dirac fermions in the two-index representation at high temperature. When N is
even these theories exhibit a spontaneously broken Z2 centre symmetry. We study
aspects of the domain wall that interpolates between the two vacua of the
theory. In particular we calculate its tension to two-loop order. We compare
its tension to the corresponding domain wall in a SU(N) gauge theory with
adjoint fermions and find an agreement at large-N, as expected from planar
equivalence between the two theories. Moreover, we provide a non-perturbative
proof for the coincidence of the tensions at large-N. We also discuss the
vacuum structure of the theory when the fermion is given a large mass and argue
that there exist N-2 metastable vacua. We calculate the lifetime of those vacua
in the thin wall approximation.Comment: 29 pages, 4 figures. v2: minor changes in the introduction section.
to appear in JHE
Quantum limit of deterministic theories
We show that the quantum linear harmonic oscillator can be obtained in the
large limit of a classical deterministic system with SU(1,1) dynamical
symmetry. This is done in analogy with recent work by G.'t Hooft who
investigated a deterministic system based on SU(2). Among the advantages of our
model based on a non--compact group is the fact that the ground state energy is
uniquely fixed by the choice of the representation.Comment: 4 pages, 2 figures, minor corrections added. To appear in the
Proceedings of Waseda International Symposium on Fundamental Physics: "New
Perspectives in Quantum Physics", 12-15 November 2002, Waseda University,
Tokyo, Japa
One-Loop Quantum Energy Densities of Domain Wall Field Configurations
We discuss a simple procedure for computing one-loop quantum energies of any
static field configuration that depends non-trivially on only a single spatial
coordinate. We specifically focus on domain wall-type field configurations that
connect two distinct minima of the effective potential, and may or may not be
the solutions of classical field equations. We avoid the conventional summation
of zero-point energies, and instead exploit the relation between functional
determinants and solutions of associated differential equations. This approach
allows ultraviolet divergences to be easily isolated and extracted using any
convenient regularization scheme. Two examples are considered: two-dimensional
theory, and three-dimensional scalar electrodynamics with spontaneous
symmetry breaking at the one-loop level.Comment: RevTex, 29 pages, 1 figure, minor corrections, references adde
Center clusters in the Yang-Mills vacuum
Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory
at finite temperature are analyzed. We show that spatial clusters can be
identified where the local Polyakov loops have values close to the same center
element. For a suitable definition of these clusters the deconfinement
transition can be characterized by the onset of percolation in one of the
center sectors. The analysis is repeated for different resolution scales of the
lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE
Critical Exponents from AdS/CFT with Flavor
We use the AdS/CFT correspondence to study the thermodynamics of massive N=2
supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric
SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of
large Nc and large 't Hooft coupling. The gravitational duals are probe
D-branes in global thermal AdS. These D-branes may undergo a topology-changing
transition in the bulk. The D-brane embeddings near the point of the topology
change exhibit a scaling symmetry. The associated scaling exponents can be
either real- or complex-valued. Which regime applies depends on the
dimensionality of a collapsing submanifold in the critical embedding. When the
scaling exponents are complex-valued, a first-order transition associated with
the flavor fields appears in the dual field theory. Real scaling exponents are
expected to be associated with a continuous transition in the dual field
theory. For one example with real exponents, the D7-brane, we study the
transition in detail. We find two field theory observables that diverge at the
critical point, and we compute the associated critical exponents. We also
present analytic and numerical evidence that the transition expresses itself in
the meson spectrum as a non-analyticity at the critical point. We argue that
the transition we study is a true phase transition only when the 't Hooft
coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one
footnote, version published in JHE
Debye screening in strongly coupled N=4 supersymmetric Yang-Mills plasma
Using the AdS/CFT correspondence, we examine the behavior of correlators of
Polyakov loops and other operators in N=4 supersymmetric Yang-Mills theory at
non-zero temperature. The implications for Debye screening in this strongly
coupled non-Abelian plasma, and comparisons with available results for thermal
QCD, are discussed.Comment: 21 pages, 5 figures, significantly expanded discussion of Polyakov
loop correlator and static quark-antiquark potentia
- …
