32 research outputs found

    Exploring the plankton bacteria diversity and distribution patterns in the surface water of northwest pacific ocean by metagenomic methods

    Get PDF
    The study of marine microbial communities is crucial for comprehending the distribution patterns, adaptations to the environment, and the functioning of marine microorganisms. Despite being one of the largest biomes on Earth, the bacterioplankton communities in the Northwest Pacific Ocean (NWPO) remain understudied. In this research, we aimed to investigate the structure of the surface bacterioplankton communities in different water masses of the NWPO. We utilized metagenomic sequencing techniques and cited previous 16S rRNA data to explore the distribution patterns of bacterioplankton in different seasons. Our results revealed that Cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria dominated the microbial communities, accounting for over 95% of the total. During spring, we observed significant differentiation in community structure between the different water masses. For instance, Prochlorococcus and Pseudoalteromonas were primarily distributed in the nutrient-deficient subtropical countercurrent zone, while Flavobacteriaceae and Rhodobacteraceae were found in the Kuroshio-Oyashio mixing zone. During summer, the surface planktonic bacteria communities became homogenized across regions, with Cyanobacteria becoming the dominant group (68.6% to 84.9% relative abundance). The metabolic processes of the microorganisms were dominated by carbohydrate metabolism, followed by amino acid transport and metabolism. However, there was a low relative abundance of functional genes involved in carbohydrate metabolism in the Kuroshio-Oyashio mixing zone. The metagenomic data had assembled 37 metagenomic-assembled genomes (MAGs), which belong to Proteobacteria, Bacteroidetes, and Euryarchaeota. In conclusion, our findings highlight the diversity of the surface bacterioplankton community composition in the NWPO, and its distinct geographic distribution characteristics and seasonal variations

    Identifying and decoupling many-body interactions in spin ensembles in diamond

    Full text link
    We simulate the dynamics of varying density quasi-two-dimensional spin ensembles in solid-state systems, focusing on the nitrogen-vacancy centers in diamond. We consider the effects of various control sequences on the averaged dynamics of large ensembles of spins, under a realistic "spin-bath" environment. We reveal that spin locking is efficient for decoupling spins initialized along the driving axis, both from coherent dipolar interactions and from the external spin-bath environment, when the driving is two orders of magnitude stronger than the relevant coupling energies. Since the application of standard pulsed dynamical decoupling sequences leads to strong decoupling from the environment, while other specialized pulse sequences can decouple coherent dipolar interactions, such sequences can be used to identify the dominant interaction type. Moreover, a proper combination of pulsed decoupling sequences could lead to the suppression of both interaction types, allowing additional spin manipulations. Finally, we consider the effect of finite-width pulses on these control protocols and identify improved decoupling efficiency with increased pulse duration, resulting from the interplay of dephasing and coherent dynamics

    Production of human blood group B antigen epitope conjugated protein in Escherichia coli and utilization of the adsorption blood group B antibody

    Get PDF
    Additional file 1: Table S1. List of constructed plasmids, strains and primers used in the study. Figure S1. MALDI-TOF detection of MBPmut (a) and MBPmut-OPS (b)

    Discovery of Digenic Mutation, KCNH2 c.1898A >C and JUP c.916dupA, in a Chinese Family with Long QT Syndrome via Whole-Exome Sequencing

    Get PDF
    Long QT syndrome (LQTS), which is caused by an ion channel–related gene mutation, is a malignant heart disease with a clinical course of a high incidence of ventricular fibrillation and sudden cardiac death in the young. Mutations in KCNH2 (which encodes potassium voltage-gated channel subfamily H member 2) are responsible for LQTS in many patients. Here we report the novel mutation c.1898A>C in KCNH2 in a Chinese family with LQTS through whole-exome sequencing. The c.916dupA mutation in JUP (which encodes junction plakoglobin) is also discovered. Mutations in JUP were found to be associated with arrhythmogenic right ventricular cardiomyopathy. The double mutation in the proband may help explain his severe clinical manifestations, such as sudden cardiac death at an early age. Sequencing for the proband’s family members revealed that the KCNH2 mutation descends from his paternal line, while the mutation in JUP came from his maternal line. The data provided in this study may help expand the spectrum of LQTS-related KCNH2 mutations and add support to the genetic diagnosis and counseling of families affected by malignant arrhythmias

    A Novel Method for Constructing Main-Aftershock Sequences and Its Application in the Global Damage Accumulation Effects Analysis of Gravity Dams

    No full text
    The traditional linear elastic and Drucker–Prager (DP) models cannot truly reflect the strong nonlinear characteristics of the concrete and rock foundation of the dam under earthquake. Therefore, for comprehensive evaluation of the cumulative damage of the gravity dam structure caused by aftershock, the dynamic damage of the dam body concrete is analyzed by many scholars through the plastic damage mechanics method, but there is little research on rock material at the dam foundation with the method utilized; thus, the simulation of the whole dynamic damage evolution is worthy of investigation of the dam body and dam foundation. According to the randomness of ground motion, the transcendental probability (P) is introduced to express the statistical characteristics of aftershock intensity, and a new method for constructing main-aftershock sequences of ground motion is proposed in this paper. And then, the law of the damage evolution and energy characteristics of the concrete gravity dam under the combined action of the main shock and aftershock sequences is studied. The results are shown as follows: the smaller aftershocks do not cause further damage to the dam; as the aftershock intensity increases, the energy characteristics of the dam body and foundation have shown different changing rules; when the ratio of peak aftershock acceleration to peak main shock acceleration (∇PGA) approximately equals 0.68, the aftershock will cause larger secondary damage to the dam

    Feasibility of Tunnel TEM Advanced Prediction: A 3D Forward Modeling Study

    No full text
    The transient electromagnetic (TEM) method has long been applied in tunnel advanced prediction. However, it remains questionable to what extent a geologic anomaly body will influence the induced electromagnetic response in front of the heading face. The dilemma is partly because observed TEM data are frequently interpreted by empirical formulas or proportional relationships, and a quantitative measurement has not been established. In this paper, we strive to understand the TEM characteristics from a 3D finite-element time-domain (FETD) modeling aspect. The modeling algorithm is based on unstructured space meshing and unconditional stable time discretization, which ensures its accuracy and stability. The modeling algorithm is verified by a half-space model, in which the misfit of late-time channels that we are concerned with is generally below 1%. The algorithm has also been utilized to carry out the TEM response of tunnel models with different types of TEM devices. Through model studies, we find that both the traditional central-loop device and the recently developed weak-coupling opposing-coil device are feasible in tunnel advanced detection. Nevertheless, the latter type of device better distinguishes low-resistivity anomalies at 30 m ahead of the heading face with a relative difference (between models with and without the anomaly) of more than 1000% at certain time channels, compared with only a 10% difference of the central-loop device. Also, we conclude that the vertical electromagnetic field component should be recorded and interpreted together with the horizontal field to provide more convincing results

    Microbial carbonylation and hydroxylation of 20(<i>R</i>)-panaxadiol by <i>Aspergillus niger</i>

    No full text
    <p>20(<i>R</i>)-panaxadiol (PD) was metabolised by the fungus <i>Aspergillus niger</i> AS 3.3926 to its C-3 carbonylated metabolite and five other hydroxylated metabolites (<b>1</b>–6). Their structures were elucidated as 3-oxo-20(<i>R</i>)-panaxadiol (<b>1</b>), 3-oxo-7β-hydroxyl- 20(<i>R</i>)-panaxadiol (<b>2</b>), 3-oxo-7β,23α-dihydroxyl-20(<i>R</i>)-panaxadiol (<b>3</b>), 3,12-dioxo- 7β,23β-dihydroxyl-20(<i>R</i>)-panaxadiol (<b>4</b>), 3-oxo-1α,7β-dihydroxyl-20(<i>R</i>)-panaxadiol (<b>5</b>) and 3-oxo-7β,15β-dihydroxyl-20(<i>R</i>)-panaxadiol (<b>6</b>) by spectroscopic analysis. Among them, compounds <b>2</b>–<b>6</b> were new compounds. Pharmacological studies revealed that compound <b>6</b> exhibited significant anti-hepatic fibrosis activity.</p
    corecore